Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36298353

ABSTRACT

With the advancement in next-generation communication technologies, the so-called Tactile Internet is getting more attention due to its smart applications, such as haptic-enabled teleoperation systems. The stringent requirements such as delay, jitter, and packet loss of these delay-sensitive and loss-intolerant applications make it more challenging to ensure the Quality of Service (QoS) and Quality of Experience (QoE). In this regard, different haptic codec and control schemes were proposed for QoS and QoE provisioning in the Tactile Internet. However, they maximize the QoE while degrading the system's stability under varying delays and high packet rates. In this paper, we present a reinforcement learning-based Intelligent Tactile Edge (ITE) framework to ensure both transparency and stability of teleoperation systems with high packet rates and variable time delay communication networks. The proposed ITE first estimates the network challenges, including communication delay, jitter, and packet loss, and then utilizes a Q-learning algorithm to select the optimal haptic codec scheme to reduce network load. The proposed framework aims to explore the optimal relationship between QoS and QoE parameters and make the tradeoff between stability and transparency during teleoperations. The simulation result indicates that the proposed strategy chooses the optimal scheme under different network impairments corresponding to the congestion level in the communication network while improving the QoS and maximizing the QoE. The end-to-end performance of throughput (1.5 Mbps) and average RTT (70 ms) during haptic communication is achieved with a learning rate and discounted factor value of 0.5 and 0.8, respectively. The results indicate that the communication system can successfully achieve the QoS and QoE requirements by employing the proposed ITE framework.


Subject(s)
Algorithms , Computer Communication Networks , Computer Simulation , Intelligence
2.
Sensors (Basel) ; 21(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34960454

ABSTRACT

With the inclusion of tactile Internet (TI) in the industrial sector, we are at the doorstep of the tactile Industrial Internet of Things (IIoT). This provides the ability for the human operator to control and manipulate remote industrial environments in real-time. The TI use cases in IIoT demand a communication network, including ultra-low latency, ultra-high reliability, availability, and security. Additionally, the lack of the tactile IIoT testbed has made it more severe to investigate and improve the quality of services (QoS) for tactile IIoT applications. In this work, we propose a virtual testbed called IoTactileSim, that offers implementation, investigation, and management for QoS provisioning in tactile IIoT services. IoTactileSim utilizes a network emulator Mininet and robotic simulator CoppeliaSim to perform real-time haptic teleoperations in virtual and physical environments. It provides the real-time monitoring of the implemented technology parametric values, network impairments (delay, packet loss), and data flow between operator (master domain) and teleoperator (slave domain). Finally, we investigate the results of two tactile IIoT environments to prove the potential of the proposed IoTactileSim testbed.


Subject(s)
Internet of Things , Humans , Industry , Reproducibility of Results , Technology , Touch
3.
Sensors (Basel) ; 21(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34577325

ABSTRACT

A 24 GHz high linear, high-gain up-conversion mixer is realized for fifth-generation (5G) applications in the 65 nm CMOS process. The mixer's linearity is increased by applying an Improved Derivative Super-Position (I-DS) technique cascaded between the mixer's transconductance and switching stage. The high gain and stability of amplifiers in the transconductance stage of the mixer are achieved using novel tunable capacitive cross-coupled common source (TCC-CS) transistors. Using the I-DS, the third-order non-linear coefficient of current is closed to zero, enhancing the linearity. Additionally, a TCC-CS, which is realized by varactors, neutralizes the gate-to-drain parasitic capacitance (Cgd) of transistors in the transconductance stage of the mixer and contributes to the improvement of the gain and stability of the mixer. The measured 1 dB compression point OP1dB of the designed mixer is 4.1 dBm and IP1dB is 0.67 dBm at 24 GHz. The conversion gain of 4.1 dB at 24 GHz and 3.2 ± 0.9 dB, from 20 to 30 GHz is achieved in the designed mixer. Furthermore, a noise figure of 3.8 dB is noted at 24 GHz. The power consumption of the mixer is 4.9 mW at 1.2 V, while the chip area of the designed mixer is 0.4 mm2.

4.
Article in English | MEDLINE | ID: mdl-33916851

ABSTRACT

Diabetes distress is an alternative disorder that is often associated with depression syndromes. Psychosocial distress is an alternative disorder that acts as a resistance to diabetes self-care management and compromises diabetes control. Yet, in Nigeria, the focus of healthcare centers is largely inclined toward the medical aspect of diabetes that neglects psychosocial care. In this retrospective study, specific distress was measured by the Diabetes Distress Screening (DDS) scale, and depression was analyzed by the Beck Depression Inventory (BDI) and Diagnosis Statistics Manual (DSM) criteria in type 2 diabetes mellitus (T2DM) patients of Northwestern Nigeria. Additionally, we applied the Chi-square test and linear regression to measure the forecast prevalence ratio and evaluate the link between the respective factors that further determine the odd ratios and coefficient correlations in five nonintrusive variables, namely age, gender, physical exercise, diabetes history, and smoking. In total, 712 sample patients were taken, with 51.68% male and 47.31% female patients. The mean age and body mass index (BMI) was 48.6 years ± 12.8 and 45.6 years ± 8.3. Based on the BDI prediction, 90.15% of patients were found depressed according to the DSM parameters, and depression prevalence was recorded around 22.06%. Overall, 88.20% of patients had DDS-dependent diabetes-specific distress with a prevalence ratio of 24.08%, of whom 45.86% were moderate and 54.14% serious. In sharp contrast, emotion-related distress of 28.96% was found compared to interpersonal (23.61%), followed by physician (16.42%) and regimen (13.21%) distress. The BDI-based matching of depression signs was also statistically significant with p < 0.001 in severe distress patients. However, 10.11% of patients were considered not to be depressed by DSM guidelines. The statistical evidence indicates that depression and distress are closely correlated with age, sex, diabetes history, physical exercise, and smoking influences. The facts and findings in this work show that emotional distress was found more prevalent. This study is significant because it considered several sociocultural and religious differences between Nigeria and large, undeveloped, populated countries with low socioeconomic status and excessive epidemiological risk. Finally, it is important for the clinical implications of T2DM patients on their initial screenings.


Subject(s)
Diabetes Mellitus, Type 2 , Depression/diagnosis , Depression/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Emotions , Female , Humans , Male , Nigeria/epidemiology , Retrospective Studies
5.
Sensors (Basel) ; 21(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923320

ABSTRACT

Image denoising is a challenging task that is essential in numerous computer vision and image processing problems. This study proposes and applies a generative adversarial network-based image denoising training architecture to multiple-level Gaussian image denoising tasks. Convolutional neural network-based denoising approaches come across a blurriness issue that produces denoised images blurry on texture details. To resolve the blurriness issue, we first performed a theoretical study of the cause of the problem. Subsequently, we proposed an adversarial Gaussian denoiser network, which uses the generative adversarial network-based adversarial learning process for image denoising tasks. This framework resolves the blurriness problem by encouraging the denoiser network to find the distribution of sharp noise-free images instead of blurry images. Experimental results demonstrate that the proposed framework can effectively resolve the blurriness problem and achieve significant denoising efficiency than the state-of-the-art denoising methods.

6.
Sensors (Basel) ; 20(15)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752232

ABSTRACT

This paper investigates the time-domain performance of a switchable filter impulse radio ultra-wideband (IR-UWB) antenna for microwave breast imaging applications. A miniaturized CPW-fed integrated filter antenna with switchable performance in the range of the Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) bands could operate well within a 3.0 to 11 GHz frequency range. The time-domain performance of the filter antenna was investigated in comparison to that of the designed reference wideband antenna. By comparing both antennas' time-domain characteristics, it was seen that the switchable filter antenna had good time-domain resolution along with the frequency-domain operation. Additionally, the time-domain investigation revealed that the switchable filter wide-band antenna performed similarly to the reference wide band antenna. This antenna was also utilized for a tumor detection application, and it was seen that the switchable filter wide-band antenna could detect a miniaturized irregularly shaped tumor easily, which is quite promising. Such an antenna with a good time-domain resolution and tumor detection capability will be a good candidate and will find potential applications in microwave breast imaging.


Subject(s)
Microwaves , Diagnostic Imaging , Wireless Technology
7.
J Clin Dent ; 28(3): 56-61, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29211952

ABSTRACT

OBJECTIVES: We have previously reported on progress toward the refinement of profilometry-based abrasivity testing of dentifrices using a V8 brushing machine and tactile or optical measurement of dentin wear. The general application of this technique may be advanced by demonstration of successful inter-laboratory confirmation of the method. The objective of this study was to explore the capability of different laboratories in the assessment of dentifrice abrasivity using a profilometry-based evaluation technique developed in our Mason laboratories. In addition, we wanted to assess the interchangeability of human and bovine specimens. METHODS: Participating laboratories were instructed in methods associated with Radioactive Dentin Abrasivity-Profilometry Equivalent (RDA-PE) evaluation, including site visits to discuss critical elements of specimen preparation, masking, profilometry scanning, and procedures. Laboratories were likewise instructed on the requirement for demonstration of proportional linearity as a key condition for validation of the technique. Laboratories were provided with four test dentifrices, blinded for testing, with a broad range of abrasivity. In each laboratory, a calibration curve was developed for varying V8 brushing strokes (0, 4,000, and 10,000 strokes) with the ISO abrasive standard. Proportional linearity was determined as the ratio of standard abrasion mean depths created with 4,000 and 10,000 strokes (2.5 fold differences). Criteria for successful calibration within the method (established in our Mason laboratory) was set at proportional linearity = 2.5 ± 0.3. RDA-PE was compared to Radiotracer RDA for the four test dentifrices, with the latter obtained by averages from three independent Radiotracer RDA sites. Individual laboratories and their results were compared by 1) proportional linearity and 2) acquired RDA-PE values for test pastes. RESULTS: Five sites participated in the study. One site did not pass proportional linearity objectives. Data for this site are not reported at the request of the researchers. Three of the remaining four sites reported herein tested human dentin and all three met proportional linearity objectives for human dentin. Three of four sites participated in testing bovine dentin and all three met the proportional linearity objectives for bovine dentin. RDA-PE values for test dentifrices were similar between sites. All four sites that met proportional linearity requirement successfully identified the dentifrice formulated above the industry standard 250 RDA (as RDA-PE). The profilometry method showed at least as good reproducibility and differentiation as Radiotracer assessments. It was demonstrated that human and bovine specimens could be used interchangeably. CONCLUSIONS: The standardized RDA-PE method was reproduced in multiple laboratories in this inter-laboratory study. Evidence supports that this method is a suitable technique for ISO method 11609 Annex B.


Subject(s)
Dentifrices , Tooth Abrasion , Animals , Cattle , Dentifrices/adverse effects , Dentin , Humans , Materials Testing , Reproducibility of Results , Toothbrushing , Toothpastes
8.
Int Dent J ; 61 Suppl 3: 55-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21762156

ABSTRACT

AIM: To evaluate the ability of two experimental toothpastes containing 0.1%w/w o-cymen-5-ol, 0.6%w/w ZnCl2 and 0.320%w/w NaF to reduce demineralisation of sound human enamel compared with control toothpastes. METHODS: Study 1: Specimens were treated with toothpaste slurries, followed by alternating periods in demineralising and neutral solutions. Demineralisation was assessed using surface microhardness (SMH). Study 2: Specimens were subjected to a 14 day cycling regime of alternating demineralisation/remineralisation with two toothpaste treatments per day, before and after demineralisation. Demineralisation was assessed by cross-sectional microhardness and mineral loss (ΔZ) was calculated. Test toothpastes were a) 0%w/w or 0.002%w/w NaF placebo, b) 0.055%w/w or 0.149%w/w NaF (dose response), c) 0.320%w/w NaF marketed product, d & e) 0.1%w/w o-cymen-5-ol, 0.6%w/w ZnCl2 and 0.320%w/w NaF (experimental toothpastes). RESULTS: Study 1: Mean±SE % of baseline hardness values were a) 48.0±2.1a, b) 66.7±1.7b, c) 82.9±1.9c, d) 91.7±1.4d and e) 94.6±2.1d. Study 2: Mean±SE ΔZ values were a) 2114±187a, b) 1206±132b, c) 303±89c, d) 19±73c, and e) -10±55c. Letters represent different statistical groupings (P<0.05). CONCLUSION: In study 1, both experimental toothpastes were statistically superior to the marketed product and in study 2; they were at least as effective as the marketed product at reducing caries lesion development.


Subject(s)
Chlorides/therapeutic use , Phenols/therapeutic use , Tooth Demineralization/prevention & control , Toothpastes/therapeutic use , Zinc Compounds/therapeutic use , Analysis of Variance , Cariostatic Agents/pharmacology , Cariostatic Agents/therapeutic use , Chlorides/pharmacology , Hardness/drug effects , Humans , Hydrogen-Ion Concentration , Phenols/pharmacology , Sodium Fluoride/pharmacology , Sodium Fluoride/therapeutic use , Tooth Remineralization , Toothpastes/chemistry , Toothpastes/pharmacology , Zinc Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...