Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35591305

ABSTRACT

Self-healing materials have the potential to create a paradigm shift in the life cycle design of engineered structures, by changing the relation between material damage and structural failure, affecting structures' lifetime, safety, and reliability. However, the knowledge of self-healing capabilities in metallic materials is still in its infancy compared to other material systems because of challenges in the synthesis of organized and complex structures. This paper presents a study of a metal matrix composite system that was synthesized with an off-eutectic Tin (Sn)-Bismuth (Bi) alloy matrix, reinforced with Nickel-Titanium (NiTi) shape memory alloy (SMA) wires. The ability to close cracks, recover bulk geometry, and regenerate strength upon the application of heat was investigated. NiTi wires were etched and coated in flux before being incorporated into the matrix to prevent disbonding with the matrix. Samples were subjected to large deformations in a three-point bending setup. Subsequent thermo-mechanical testing of the composites confirmed the materials' ability to restore their geometry and recover strength, without using any consumable components. Self-healing was accomplished through a combination of activation of the shape memory effect in the NiTi to recover the samples' original macroscopic geometry, closing cracks, and melting of the eutectic material in the matrix alloy, which resealed the cracks. Subsequent testing indicated a 92% strength recovery.

2.
Sci Rep ; 9(1): 19805, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31874957

ABSTRACT

The adhesion strength of thin films is critical to the durability of micro and nanofabricated devices. However, current testing methods are imprecise and do not produce quantitative results necessary for design specifications. The most common testing methods involve the manual application and removal of unspecified tape. This overcome many of the challenges of connecting to thin films to test their adhesion properties but different tapes, variation in manual application, and poorly controlled removal of tape can result in wide variation in resultant forces. Furthermore, the most common tests result in a qualitative ranking of film survival, not a measurement with scientific units. This paper presents a study into application and peeling parameters that can cause variation in the peeling force generated by tapes. The results of this study were then used to design a test methodology that would control the key parameters and produced repeatable quantitative measurements. Testing using the resulting method showed significant improvement over more standard methods, producing measured results with reduced variation. The new method was tested on peeling a layer of paint from a PTFE backing and was found to be sensitive enough to register variation in force due to differing peeling mechanisms within a single test.

SELECTION OF CITATIONS
SEARCH DETAIL
...