Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408106

ABSTRACT

A 32-bit chipless RFID tag operating in the 4.5-10.9 GHz band is presented in this paper. The tag has a unique multiple-arc-type shape consisting of closely packed 0.2 mm wide arcs of different radii and lengths. The specific tag geometry provides multiple resonances in frequency domain of an RCS plot. A frequency domain coding technique has also been proposed to encode the tag's RCS signature into a 32-bit digital identification code. The tag has an overall dimension of 17.9 × 17.9 mm2, resulting in a high code density of 9.98 bits/cm2 and spectral efficiency of 5 bits/GHz. The proposed tag is built on a low loss substrate bearing a very small footprint, thereby making it extremely suitable for large-scale product identification purposes in future chipless RFID tag systems.


Subject(s)
Radio Frequency Identification Device , Radio Frequency Identification Device/methods
2.
J Healthc Eng ; 2021: 7000991, 2021.
Article in English | MEDLINE | ID: mdl-34931139

ABSTRACT

In this study, we introduced a preprocessing novel transformation approach for multifocus image fusion. In the multifocus image, fusion has generated a high informative image by merging two source images with different areas or objects in focus. Acutely the preprocessing means sharpening performed on the images before applying fusion techniques. In this paper, along with the novel concept, a new sharpening technique, Laplacian filter + discrete Fourier transform (LF + DFT), is also proposed. The LF is used to recognize the meaningful discontinuities in an image. DFT recognizes that the rapid change in the image is like sudden changes in the frequencies, low-frequency to high-frequency in the images. The aim of image sharpening is to highlight the key features, identifying the minor details, and sharpen the edges while the previous methods are not so effective. To validate the effectiveness the proposed method, the fusion is performed by a couple of advanced techniques such as stationary wavelet transform (SWT) and discrete wavelet transform (DWT) with both types of images like grayscale and color image. The experiments are performed on nonmedical and medical (breast medical CT and MRI images) datasets. The experimental results demonstrate that the proposed method outperforms all evaluated qualitative and quantitative metrics. Quantitative assessment is performed by eight well-known metrics, and every metric described its own feature by which it is easily assumed that the proposed method is superior. The experimental results of the proposed technique SWT (LF + DFT) are summarized for evaluation matrices such as RMSE (5.6761), PFE (3.4378), MAE (0.4010), entropy (9.0121), SNR (26.8609), PSNR (40.1349), CC (0.9978), and ERGAS (2.2589) using clock dataset.


Subject(s)
Algorithms , Wavelet Analysis , Entropy , Humans , Magnetic Resonance Imaging , Tomography, X-Ray Computed/methods
3.
J Healthc Eng ; 2021: 4138137, 2021.
Article in English | MEDLINE | ID: mdl-34484652

ABSTRACT

Multiple sclerosis (MS) is a chronic and autoimmune disease that forms lesions in the central nervous system. Quantitative analysis of these lesions has proved to be very useful in clinical trials for therapies and assessing disease prognosis. However, the efficacy of these quantitative analyses greatly depends on how accurately the MS lesions have been identified and segmented in brain MRI. This is usually carried out by radiologists who label 3D MR images slice by slice using commonly available segmentation tools. However, such manual practices are time consuming and error prone. To circumvent this problem, several automatic segmentation techniques have been investigated in recent years. In this paper, we propose a new framework for automatic brain lesion segmentation that employs a novel convolutional neural network (CNN) architecture. In order to segment lesions of different sizes, we have to pick a specific filter or size 3 × 3 or 5 × 5. Sometimes, it is hard to decide which filter will work better to get the best results. Google Net has solved this problem by introducing an inception module. An inception module uses 3 × 3, 5 × 5, 1 × 1 and max pooling filters in parallel fashion. Results show that incorporating inception modules in a CNN has improved the performance of the network in the segmentation of MS lesions. We compared the results of the proposed CNN architecture for two loss functions: binary cross entropy (BCE) and structural similarity index measure (SSIM) using the publicly available ISBI-2015 challenge dataset. A score of 93.81 which is higher than the human rater with BCE loss function is achieved.


Subject(s)
Multiple Sclerosis , Brain/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Neural Networks, Computer , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...