Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21093, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473939

ABSTRACT

Premature leaf senescence negatively influences the physiology and yield of cotton plants. The conserved IDLNL sequence in the C-terminal region of AGL42 MADS-box determines its repressor potential for the down regulation of senescence-related genes. To determine the delay in premature leaf senescence, Arabidopsis AGL42 gene was overexpressed in cotton plants. The absolute quantification of transgenic cotton plants revealed higher mRNA expression of AGL42 compared to that of the non-transgenic control. The spatial expression of GUS fused with AGL42 and the mRNA level was highest in the petals, abscission zone (flower and bud), 8 days post anthesis (DPA) fiber, fresh mature leaves, and senescenced leaves. The mRNA levels of different NAC senescence-promoting genes were significantly downregulated in AGL42 transgenic cotton lines than those in the non-transgenic control. The photosynthetic rate and chlorophyll content were higher in AGL42 transgenic cotton lines than those in the non-transgenic control. Fluorescence in situ hybridization of the AG3 transgenic cotton line revealed a fluorescent signal on chromosome 1 in the hemizygous form. Moreover, the average number of bolls in the transgenic cotton lines was significantly higher than that in the non-transgenic control because of the higher retention of floral buds and squares, which has the potential to improve cotton fiber yield.


Subject(s)
Gossypium , Transcription Factors , Gossypium/genetics , Down-Regulation , Transcription Factors/genetics , In Situ Hybridization, Fluorescence , Plant Senescence , RNA, Messenger
2.
J Transl Med ; 18(1): 275, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32635935

ABSTRACT

BACKGROUND: The Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) outbreak originating in Wuhan, China, has raised global health concerns and the pandemic has now been reported on all inhabited continents. Hitherto, no antiviral drug is available to combat this viral outbreak. METHODS: Keeping in mind the urgency of the situation, the current study was designed to devise new strategies for drug discovery and/or repositioning against SARS-CoV-2. In the current study, RNA-dependent RNA polymerase (RdRp), which regulates viral replication, is proposed as a potential therapeutic target to inhibit viral infection. RESULTS: Evolutionary studies of whole-genome sequences of SARS-CoV-2 represent high similarity (> 90%) with other SARS viruses. Targeting the RdRp active sites, ASP760 and ASP761, by antiviral drugs could be a potential therapeutic option for inhibition of coronavirus RdRp, and thus viral replication. Target-based virtual screening and molecular docking results show that the antiviral Galidesivir and its structurally similar compounds have shown promise against SARS-CoV-2. CONCLUSIONS: The anti-polymerase drugs predicted here-CID123624208 and CID11687749-may be considered for in vitro and in vivo clinical trials.


Subject(s)
Betacoronavirus/enzymology , Computational Biology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Molecular Targeted Therapy , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Sequence , Betacoronavirus/isolation & purification , COVID-19 , Drug Evaluation, Preclinical , Evolution, Molecular , Humans , Ligands , Molecular Docking Simulation , Pandemics , Phylogeny , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2 , Thermodynamics
3.
Pak J Pharm Sci ; 33(6): 2697-2705, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33867348

ABSTRACT

COVID-19 (Coronavirus Disease 2019) caused by a novel 'SARS-CoV-2' virus resulted in public health emergencies across the world. An effective vaccine to cure this virus is not yet available, thus requires concerted efforts at various scales. In this study, we employed Computer-Aided Drug Design (CADD) based approach to identify the drug-like compounds - inhibiting the replication of the main protease (Mpro) of SARS-CoV-2. Our database search using an online tool "ZINC pharmer" retrieved ~1500 compounds based on pharmacophore features. Lipinski's rule was applied to further evaluate the drug-like compounds, followed by molecular docking-based screening, and the selection of screening ligand complex with Mpro based on S-score (higher than reference inhibitor) and root-mean-square deviation (RMSD) value (less than reference inhibitor) using AutoDock 4.2. Resultantly, ~200 compounds were identified having strong interaction with Mpro of SARS-CoV-2. After evaluating their binding energy using the AutoDock 4.2 software, three compounds (ZINC20291569, ZINC90403206, ZINC95480156) were identified that showed highest binding energy with Mpro of SARS-CoV-2 and strong inhibition effect than the N3 (reference inhibitor). A good binding energy, drug likeness and effective pharmacokinetic parameters suggest that these candidates have greater potential to stop the replication of SARS-CoV-2, hence might lead to the cure of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/drug effects , SARS-CoV-2/drug effects , Binding Sites , Computer Simulation , Databases, Genetic , Drug Design , Drug Discovery/methods , High-Throughput Screening Assays , Humans , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...