Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1687, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402188

ABSTRACT

The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.


Subject(s)
Brain , Neurons , Animals , Neurons/physiology , Primates , Action Potentials/physiology
2.
Brain Stimul ; 15(5): 1093-1100, 2022.
Article in English | MEDLINE | ID: mdl-35964870

ABSTRACT

BACKGROUND: Neural oscillations in the primary motor cortex (M1) shape corticospinal excitability. Power and phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate motor cortical output. However, the functional dynamics of both mu and beta phase and power relationships and their interaction, are largely unknown. OBJECTIVE: Here, we employ recently developed real-time targeting of the mu and beta rhythm, to apply phase-specific brain stimulation and probe motor corticospinal excitability non-invasively. For this, we used instantaneous read-out and analysis of ongoing oscillations, targeting four different phases (0°, 90°, 180°, and 270°) of mu and beta rhythms with suprathreshold single-pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor evoked potentials (MEPs) in the right first dorsal interossei muscle were recorded. Twenty healthy adults took part in this double-blind randomized crossover study. RESULTS: Mixed model regression analyses showed significant phase-dependent modulation of corticospinal output by both mu and beta rhythm. Strikingly, these modulations exhibit a double dissociation. MEPs are larger at the mu trough and rising phase and smaller at the peak and falling phase. For the beta rhythm we found the opposite behavior. Also, mu power, but not beta power, was positively correlated with corticospinal output. Power and phase effects did not interact for either rhythm, suggesting independence between these aspects of oscillations. CONCLUSION: Our results provide insights into real-time motor cortical oscillation dynamics, which offers the opportunity to improve the effectiveness of TMS by specifically targeting different frequency bands.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Adult , Beta Rhythm , Cross-Over Studies , Electroencephalography/methods , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods
3.
Gait Posture ; 69: 36-39, 2019 03.
Article in English | MEDLINE | ID: mdl-30660949

ABSTRACT

BACKGROUND: The six-minute walk test (6MWT) is used within clinical and research settings to assess gait performance across a variety of conditions and populations. Commonly, the test is used to identify specific aspects of gait that affect functional mobility. With the advancement of new technologies such as wireless inertial sensors, it has become possible to collect reliable, sensitive, and objective measures of gait. While the 6MWT has been accepted and used for many years, a more concise, while still objective gait analysis would likely benefit clinicians, researchers and patients. RESEARCH QUESTION: Does a concise 2-minute walk test (2MWT) provide similar information regarding gait performance and gait differences as the 6MWT in healthy young (YA) and older adults (OA)? METHODS: A total of thirty-one participants (sixteen young adults and fifteen older adults) conducted a continuous 6MWT at their self-selected pace. All participants wore six wireless inertial sensors which were placed on each foot, at the lumbar, sternum, and on each wrist. Once completed the 6MWT data was spliced into three, distinct two-minute segments. Spliced data was analyzed and compared between groups and segments. RESULTS: Results demonstrate significant age-related differences in several gait metrics, primarily with older adults showing increased spatiotemporal variability. Additionally, no significant differences were observed between the three, two-minute segments and the continuous 6MWT, with the exception of total number of strides completed. SIGNIFICANCE: These results demonstrate that the 2MWT may provide a preferable alternative to assessing gait performance by reducing confounds such as fatigue while maintaining sensitivity of measuring gait performance. These improvements may be particularly beneficial when studying populations of advanced age or with neurological disorder.


Subject(s)
Fatigue/physiopathology , Gait , Walking , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Walk Test/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...