Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 53(45): 12081-5, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25244324

ABSTRACT

The catalytic properties of Pd alloy thin films are enhanced by a thin sputtered PTFE coating, resulting in profound improvements in hydrogen adsorption and desorption in Pd-based and Pd-catalyzed hydrogen sensors and hydrogen storage materials. The remarkably enhanced catalytic performance is attributed to chemical modifications of the catalyst surface by the sputtered PTFE leading to a possible change in the binding strength of the intermediate species involved in the hydrogen sorption process.

3.
ChemSusChem ; 1(7): 643-50, 2008.
Article in English | MEDLINE | ID: mdl-18702167

ABSTRACT

CO(2)-free hydrogen can be produced from coal gasification power plants by pre-combustion decarbonisation and carbon dioxide capture. Potassium carbonate promoted hydrotalcite-based and alumina-based materials are cheap and excellent materials for high-temperature (300-500 degrees C) adsorption of CO(2), and particularly promising in the sorption-enhanced water gas shift (SEWGS) reaction. Alkaline promotion significantly improves CO(2) reversible sorption capacity at 300-500 degrees C for both materials. Hydrotalcites and promoted hydrotalcites, promoted magnesium oxide and promoted gamma-alumina were investigated by in situ analytical methods (IR spectroscopy, sorption experiments, X-ray diffraction) to identify structural and surface rearrangements. All experimental results show that potassium ions actually strongly interact with aluminium oxide centres in the aluminium-containing materials. This study unambiguously shows that potassium promotion of aluminium oxide centres in hydrotalcite generates basic sites which reversibly adsorb CO(2) at 400 degrees C.


Subject(s)
Aluminum Hydroxide/chemistry , Aluminum Oxide/chemistry , Carbon Dioxide/chemistry , Magnesium Hydroxide/chemistry , Potassium/chemistry , Temperature , Adsorption , Carbonates/chemistry
4.
Chem Commun (Camb) ; (7): 834-5, 2004 Apr 07.
Article in English | MEDLINE | ID: mdl-15045087

ABSTRACT

The incorporation of methyl groups in microporous silica membranes was proven to enhance the service time in the dehydration of a butanol-water mixture at 95 degrees C from a few weeks to more than 18 months with a water flux of about 4 kg m(-2) h(-1) and a selectivity between 500 and 20 000.

SELECTION OF CITATIONS
SEARCH DETAIL
...