Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 14(18): 3945-3952, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34323377

ABSTRACT

Graphite felt is a widely used electrode material for vanadium redox flow batteries. Electrode activation leads to the functionalization of the graphite surface with epoxy, OH, C=O, and COOH oxygenic groups and changes the carbon surface morphology and electronic structure, thereby improving the electrode's electroactivity relative to the untreated graphite. In this study, density functional theory (DFT) calculations are conducted to evaluate functionalization's contribution towards the positive half-cell reaction of the vanadium redox flow battery. The DFT calculations show that oxygenic groups improve the graphite felt's affinity towards the VO2+ /VO2 + redox couple in the following order: C=O>COOH>OH> basal plane. Projected density-of-states (PDOS) calculations show that these groups increase the electrode's sp3 hybridization in the same order, indicating that the increase in sp3 hybridization is responsible for the improved electroactivity, whereas the oxygenic groups' presence is responsible for this sp3 increment. These insights can aid the selection of activation processes and optimization of their parameters.

2.
J Phys Chem Lett ; 12(14): 3552-3559, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33819038

ABSTRACT

In this study, we use density functional theory to investigate the catalytic activity of graphene (G), single vacancy defective graphene (GSV), quaternary N-doped graphene (NGQ), and pyridinic N-doped graphene (NGpy, 3NGpy, and 4NGpy) on Co(0001) substrate for an oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). The results show pyridinic N-doped graphene on a Co support exhibited better performance than the NGQ on a Co support and free-standing systems. According to the results, ORR intermediates (*OOH, *O, and *OH) become more stable due to the presence of a Co substrate. The single pyridinic (3NGpy) layer placed on Co(0001) is the most active site. The overpotential for Co/3NGpy is rather higher compared to pure Pt(111) catalyst (0.65 V). Therefore, pyridinic N-doped graphene with a cobalt support could be a promising strategy to enhance the ORR activity of N-doped graphene in PEMFCs.

3.
RSC Adv ; 10(46): 27346-27356, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-35516936

ABSTRACT

Pt-non-precious transition metals (Pt-NPTMs) alloy electrocatalysts have gained considerable attention to develop cheaper and efficient electrocatalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this report, density functional theory (DFT) has been applied to study the catalytic activity of Pt-skin Pt3V(111) electrocatalyst for ORR in PEMFCs. The results revealed that the ORR intermediates (O, OH and OOH) have lower binding energies on Pt-skin Pt3V(111) compared to pure Pt(111) surface. The ORR on Pt-skin Pt3V(111) surface proceed via OOH dissociation with an activation energy of 0.33 eV. The formation of OH is found to be the rate determining step with an activation energy of 0.64 eV, which is even lower than in pure Pt(111) surface (0.72 eV). This indicates a better performance of Pt-skin Pt3V(111) for ORR compared to pure Pt(111) surface. Moreover, the DFT results revealed that the negative formation energy of the Pt3V alloy and the positive dissolution potential shift of the surface Pt atoms revealed the better stability of Pt-skin Pt3V(111) surface over pristine Pt(111) surface. Due to the improved activity and better stability, the new Pt3V alloy electrocatalyst is very promising for the development of low-cost and efficient PEMFCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...