Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(9)2023 09 03.
Article in English | MEDLINE | ID: mdl-37761897

ABSTRACT

Ethiopian mustard (Brassica carinata A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified B. carinata germplasms are found and conserved ex situ. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of B. carinata genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina InfiniumTM SNP array for genotyping 90 B. carinata genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 B. carinata genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm > 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in B. carinata populations with an average genetic diversity value (HE = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of B. carinata.


Subject(s)
Genetic Variation , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics , Mustard Plant/genetics , Plant Breeding , Genotype
2.
Front Plant Sci ; 14: 1192356, 2023.
Article in English | MEDLINE | ID: mdl-37546270

ABSTRACT

Yanyang Liu, Henan Academy of Agricultural Sciences (HNAAS), China; Landraces are an important genetic source for transferring valuable novel genes and alleles required to enhance genetic variation. Therefore, information on the gene pool's genetic diversity and population structure is essential for the conservation and sustainable use of durum wheat genetic resources. Hence, the aim of this study was to assess genetic diversity, population structure, and linkage disequilibrium, as well as to identify regions with selection signature. Five hundred (500) individuals representing 46 landraces, along with 28 cultivars were evaluated using the Illumina Infinium 25K wheat SNP array, resulting in 8,178 SNPs for further analysis. Gene diversity (GD) and the polymorphic information content (PIC) ranged from 0.13-0.50 and 0.12-0.38, with mean GD and PIC values of 0.34 and 0.27, respectively. Linkage disequilibrium (LD) revealed 353,600 pairs of significant SNPs at a cut-off (r2 > 0.20, P < 0.01), with an average r2 of 0.21 for marker pairs. The nucleotide diversity (π) and Tajima's D (TD) per chromosome for the populations ranged from 0.29-0.36 and 3.46-5.06, respectively, with genome level, mean π values of 0.33 and TD values of 4.43. Genomic scan using the Fst outlier test revealed 85 loci under selection signatures, with 65 loci under balancing selection and 17 under directional selection. Putative candidate genes co-localized with regions exhibiting strong selection signatures were associated with grain yield, plant height, host plant resistance to pathogens, heading date, grain quality, and phenolic content. The Bayesian Model (STRUCTURE) and distance-based (principal coordinate analysis, PCoA, and unweighted pair group method with arithmetic mean, UPGMA) methods grouped the genotypes into five subpopulations, where landraces from geographically non-adjoining environments were clustered in the same cluster. This research provides further insights into population structure and genetic relationships in a diverse set of durum wheat germplasm, which could be further used in wheat breeding programs to address production challenges sustainably.

3.
PLoS One ; 17(8): e0273008, 2022.
Article in English | MEDLINE | ID: mdl-35976886

ABSTRACT

Improving crop adaptation and stability across diverse and changing environmental conditions is essential to increasing grain yield per unit area. In turn, this contributes to meeting the increasing global food demand. Nevertheless, a number of factors challenge the efficiency of crop improvement programs, of which genotype-by-environment interaction (GEI) is one of the major factors. This study aimed to evaluate the performance and phenotypic stability of 385 Ethiopian durum wheat landraces and 35 cultivars; assess the pattern of genotype by environment interaction (GEI) effect, and identify stable and high-yielding landraces or cultivars using the additive main effect and multiplicative interaction (AMMI) and genotype main effect plus genotype by environment interaction biplot (GGE-biplot). The experiment was laid out in an alpha lattice design with two replications at five test sites (Akaki, Chefe Donsa, Holeta, Kulumsa, and Sinana). The combined analysis of variance revealed highly significant effects (P ≤ 0.01) of environments (E), genotype (G), and GEI on a phenotypic variation of traits evaluated, including grain yield. For all traits, the amount of phenotypic variance and GEI explained by the GGE biplot was higher than in AMMI2, but both exhibited significant effects of E and GEI on the genotypes. The AMMI model identified G169, G420, G413, G139, G415, G416, G417, and G418 as stable genotypes across testing sites. Whereas, the GGE biplot identified G169, G420, G415, G139, G106, G412, G413, and G417 as both high-yielding and stable across test sites. Hence, genotypes identified as stable and high yielding in the present study could be used in a durum wheat breeding program aimed at identifying genes and molecular markers associated with the crop's productivity traits as well as developing stable and high-yielding cultivars for use in East Africa and beyond.


Subject(s)
Gene-Environment Interaction , Triticum , Edible Grain/genetics , Ethiopia , Genotype , Multivariate Analysis , Plant Breeding , Triticum/genetics
4.
Front Plant Sci ; 13: 1009244, 2022.
Article in English | MEDLINE | ID: mdl-36777537

ABSTRACT

The growing global demand for wheat for food is rising due to the influence of population growth and climate change. The dissection of complex traits by employing a genome-wide association study (GWAS) allows the identification of DNA markers associated with complex traits to improve the productivity of crops. We used GWAS with 10,045 single nucleotide polymorphism (SNP) markers to search for genomic regions associated with grain yield and related traits based on diverse panels of Ethiopian durum wheat. In Ethiopia, multi-environment trials of the genotypes were carried out at five locations. The genotyping was conducted using the 25k Illumina Wheat SNP array to explore population structure, linkage disequilibrium (LD), and marker-trait associations (MTAs). For GWAS, the multi-locus Fixed and Random Model Circulating Probability Unification (FarmCPU) model was applied. Broad-sense heritability estimates were high, ranging from 0.63 (for grain yield) to 0.97 (for thousand-kernel weight). The population structure based on principal component analysis, and model-based cluster analysis revealed two genetically distinct clusters with limited admixtures. The LD among SNPs declined within the range of 2.02-10.04 Mbp with an average of 4.28 Mbp. The GWAS scan based on the mean performance of the genotypes across the environments identified 44 significant MTAs across the chromosomes. Twenty-six of these MTAs are novel, whereas the remaining 18 were previously reported and confirmed in this study. We also identified candidate genes for the novel loci potentially regulating the traits. Hence, this study highlights the significance of the Ethiopian durum wheat gene pool for improving durum wheat globally. Furthermore, a breeding strategy focusing on accumulating favorable alleles at these loci could improve durum wheat production in the East African highlands and elsewhere.

SELECTION OF CITATIONS
SEARCH DETAIL
...