Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Physiol Behav ; 240: 113551, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34375624

ABSTRACT

The quality and quantity of light changes significantly over the course of the day. The effect of light intensity on physiological and behavioural responses of animals has been well documented, particularly during the scotophase, but the effect of the wavelength of light, particularly during the photophase, less so. We assessed the daily responses in urine production, urinary 6-sulfatoxymelatonin (6-SMT) and glucocorticoid metabolite (uGCM) concentrations in the nocturnal Namaqua rock mouse (Micaelamys namaquensis) and diurnal four striped field mouse (Rhabdomys pumilio) under varying wavelengths of near monochromatic photophase (daytime) lighting. Animals were exposed to a short-wavelength light cycle (SWLC; ∼465-470 nm), a medium-wavelength light cycle (MWLC; ∼515-520 nm) and a long-wavelength light cycle (LWLC; ∼625-630 nm). The SWLC significantly attenuated mean daily urine production rates and the mean daily levels of urinary 6-SMT and of uGCM were inversely correlated with wavelength in both species. The presence of the SWLC greatly augmented overall daily 6-SMT levels, and simultaneously led to the highest uGCM concentrations in both species. In M. namaquensis, the urine production rate and urinary 6-SMT concentrations were significantly higher during the scotophase compared to the photophase under the SWLC and MWLC, whereas the uGCM concentrations were significantly higher during the scotophase under all WLCs. In R. pumilio, the urine production rate and uGCM were significantly higher during the scotophase of the SWLC, not the MWLC and LWLC. Our results illustrate that wavelength in the photophase plays a central role in the entrainment of rhythms in diurnal and nocturnal African rodent species.


Subject(s)
Circadian Rhythm , Murinae , Animals , South Africa
2.
Biol Lett ; 15(10): 20190597, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31573427

ABSTRACT

Many physiological and behavioural responses to varying qualities of light, particularly during the night (scotophase), have been well documented in rodents. We used varying wavelengths of day-time (photophase) lighting to assess daily responses in locomotor activity in the nocturnal Namaqua rock mouse (Micaelamys namaquensis) and diurnal four-striped field mouse (Rhabdomys pumilio). Animals were exposed to three light-dark cycle regimes: a short-wavelength- (SWLC, blue), a medium-wavelength- (MWLC, green) and a long-wavelength light-dark cycle (LWLC, red). Overall, daily locomotor activity of both species changed according to different wavelengths of light: the diurnal species displayed most activity under the SWLC and the nocturnal species exhibited the highest levels of activity under the LWLC. Both species showed an increase in diurnal activity and a decrease in nocturnal activity under the LWLC. These results indicate an attenuated responsiveness to long-wavelength light in the nocturnal species, but this does not appear to be true for the diurnal species. These results emphasize that the effect of light on the locomotor activity of animals depends on both the properties of the light and the temporal organization of activity of a species.


Subject(s)
Circadian Rhythm , Locomotion , Animals , Color , Murinae , Photoperiod
3.
Integr Zool ; 14(6): 589-603, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31149779

ABSTRACT

Artificial light at night (ALAN) can cause circadian disruption and result in adverse behavioral and ecological effects in free-living birds, but studies on captive pet birds as companion animals have been infrequent. We studied the effects of exposure to bright ALAN on body mass, melatonin sulfate levels, reproduction and disease severity in Australian budgerigars (Melopsittacus undulatus) kept in captivity. During the experiment, birds were kept under outdoor temperature, humidity and natural photoperiod from September to December. A total of 48 birds were equally split into 4 groups (6 mating pairs each) and concurrently exposed to ALAN of 200 lux with different duration (0, 30, 60 and 90 min). Monthly observations were recorded for all dependent parameters. ALAN exposure increased mass gain and suppressed melatonin levels in a dose-dependent manner, especially during December. In addition, ALAN exposure in all duration groups decreased egg production and reduced hatchability from 61% ± 14% in the ALAN-unexposed control group to 0% in the ALAN-exposed birds. Disease severity was also found to increase in line with the duration of ALAN exposure. In captive M. undulatus, ALAN exposure was demonstrated to affect photoperiodic regulation with subsequent excess mass gain and reproduction impairment, and increased susceptibility to infections plausibly through duration dose-dependent suppression of melatonin. To the best of our knowledge, this is the first study to demonstrate a possible association between acute bright ALAN of increasing duration and both natural development of infections as well as reproductive cessation in captive birds. Our findings could be used to improve breeding conditions of captive birds.


Subject(s)
Light/adverse effects , Melopsittacus/physiology , Oviposition , Photoperiod , Animals , Australia , Body Weight , Female , Lighting/adverse effects , Male , Melopsittacus/immunology , Time Factors
4.
J Photochem Photobiol B ; 194: 107-118, 2019 May.
Article in English | MEDLINE | ID: mdl-30953912

ABSTRACT

The association between light pollution and disruption of daily rhythms, metabolic and hormonal disorders, as well as cancer progression is well-recognized. These adverse effects could be due to nocturnal melatonin suppression. The signaling pathway by which light pollution affects metabolism and endocrine responses is unclear. We studied the effects of artificial light at night (ALAN1) on body mass, food and water intake, daily rhythms of body temperature, serum glucose and insulin in male rats. Daily rhythms of urine production and urinary 6-sulfatoxymelatonin (6-SMT2), as well as global DNA methylation in pancreas and liver tissues were also assessed. Mass gain was higher in ALAN rats compared with controls. Food intake, water consumption, glucose, insulin, and 6-SMT levels markedly lessened in response to ALAN. Conversely, urine production and body temperature were elevated in ALAN rats compared with controls. Significant 24-h rhythms were detected for all variables that were altered in mesor, amplitude, and acrophase occurrences under ALAN conditions. DNA hypo-methylation was detected in ALAN pancreatic tissue compared with controls, but not in hepatic tissue. Overall, ALAN affects metabolic and hormonal physiology in different levels in which flexible crosstalk between melatonin and both epigenetics and metabolic levels expressed as body temperature rhythm, is suggested to mediate the environmental exposure at the molecular level and subsequently physiology is altered. The flexibility of epigenetic modifications provides a potential therapeutic target for rectifying ALAN adverse effects by epigenetic markers such as melatonin and behavioral lifestyle interventions for confining ALAN exposures as much as possible.


Subject(s)
DNA Methylation/radiation effects , Hormones/metabolism , Light , Animals , Blood Glucose/metabolism , Body Temperature/radiation effects , Circadian Rhythm/radiation effects , Drinking/radiation effects , Energy Metabolism/radiation effects , Epigenesis, Genetic/radiation effects , Insulin/blood , Male , Melatonin/analogs & derivatives , Melatonin/urine , Rats , Time Factors
5.
Chronobiol Int ; 36(5): 629-643, 2019 05.
Article in English | MEDLINE | ID: mdl-30746962

ABSTRACT

Currently, one of the most disputed hypotheses regarding breast cancer (BC) development is exposure to short wavelength artificial light at night (ALAN) as multiple studies suggest a possible link between them. This link is suggested to be mediated by nocturnal melatonin suppression that plays an integral role in circadian regulations including cell division. The objective of the research was to evaluate effects of 1 × 30 min/midnight ALAN (134 µ Wcm-2, 460 nm) with or without nocturnal melatonin supplement on tumor development and epigenetic responses in 4T1 tumor-bearing BALB/c mice. Mice were monitored for body mass (Wb) and tumor volume for 3 weeks and thereafter urine samples were collected at regular intervals for determining daily rhythms of 6-sulfatoxymelatonin (6-SMT). Finally, mice were sacrificed and the tumor, lungs, liver, and spleen were excised for analyzing the total activity of DNA methyltransferases (DNMT) and global DNA methylation (GDM) levels. Mice exposed to ALAN significantly reduced 6-SMT levels and increased Wb, tumor volume, and lung metastasis compared with controls. These effects were diminished by melatonin. The DNMT activity and GDM levels showed tissue-specific response. The enzymatic activity and GDM levels were lower in tumor and liver and higher in spleen and lungs under ALAN compared with controls. Our results suggest that ALAN disrupts the melatonin rhythm and potentially leading to increased BC burden by affecting DNMT activity and GDM levels. These data may also be applicable to early detection and management of BC by monitoring melatonin and GDM levels as early biomarker of ALAN circadian disruption.


Subject(s)
Breast Neoplasms/metabolism , Circadian Rhythm/physiology , Melatonin/metabolism , Methyltransferases/metabolism , Animals , DNA/metabolism , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Humans , Light , Lung Neoplasms/metabolism , Mice
6.
J Environ Manage ; 211: 247-255, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29408073

ABSTRACT

Soil pollution in Israel, due to diesel contamination, is a major concern, with gas stations, factories and refineries being the main polluters (>60%). Vetiver grass (Vetiveria zizanioides L.) is a perennial grass belonging to the Poaceae family, and is recognized world-wide for its potential as a plant with phytoremediation traits to contaminated soils. It is demonstrated here to decrease diesel contamination in field and court-yard trials. Chemical soil analysis indicated up to a 79% decrease (P < .05) in diesel pollution of contaminated soil planted with Vetiver; and at high soil contamination levels of 10 L/m2, a significant (P < .05) reduction of 96, 96 and 87% was recorded at soil depths of 0-20, 20-40 and 40-60 cm, respectively. Furthermore, in field plots contaminated with diesel and planted with Vetiver, weeds' biomass recovered to non-polluted levels following 8 to 9 months of Vetiver treatment. An economic evaluation conducted based on the cost-benefit analysis (CBA) principles, utilizing the Net Present Value (NPV) compared phytoremediation to other currently used decontamination procedures. The economic comparison showed that phytoremediation cleanup costs are lower and more beneficial to society at large, primarily from an ecosystem services perspective. Combining the results of the agronomic examination with the economic valuation, this research pointed out that phytoremediation with Vetiver has a non-negligible potential, making it a good solution for cleansing diesel from soils on a state-wide scale in Israel and worthy of further research and development.


Subject(s)
Biodegradation, Environmental , Chrysopogon , Cost-Benefit Analysis , Israel , Soil , Soil Pollutants
7.
J Basic Clin Physiol Pharmacol ; 28(4): 295-313, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28682785

ABSTRACT

Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.


Subject(s)
Metabolic Diseases/etiology , Neoplasms/etiology , Circadian Clocks/genetics , DNA Methylation/genetics , Gene Expression Regulation/genetics , Humans , Life Style , Light , Melatonin/genetics , Metabolic Diseases/genetics , Morbidity , Neoplasms/genetics , Risk Factors
8.
J Exp Biol ; 220(Pt 9): 1684-1692, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28209805

ABSTRACT

Effects of photophase illuminance (1, 10, 100 and 330 lx of white incandescent lighting) on daily rhythms of locomotor activity, urine production and 6-sulfatoxymelatonin (6-SMT; 10 versus 330 lx) were studied in nocturnal Namaqua rock mice (Micaelamys namaquensis) and diurnal four-striped field mice (Rhabdomys pumilio). Micaelamys namaquensis was consistently nocturnal (∼90-94% nocturnal activity), whereas considerable individual variation marked activity profiles in R. pumilio, but with activity mostly pronounced around twilight (∼55-66% diurnal activity). The amplitude of daily activity was distinctly affected by light intensity and this effect was greater in M. namaquensis than in R. pumilio Only M. namaquensis displayed a distinctive daily rhythm of urine production, which correlated with its activity rhythm. Mean daily urine production appeared to be attenuated under dim photophase conditions, particularly in R. pumilio The results suggest that the circadian regulation of locomotor activity and urine production possesses separate sensitivity thresholds to photophase illuminance. Micaelamys namaquensis expressed a significant daily 6-SMT rhythm that peaked during the late night, but the rhythm was attenuated by the brighter photophase cycle (330 lx). Rhabdomys pumilio appeared to express an ultradian 6-SMT rhythm under both lighting regimes with comparable mean daily 6-SMT values, but with different temporal patterns. It is widely known that a natural dark phase which is undisturbed by artificial light is essential for optimal circadian function. Here, we show that light intensity during the photophase also plays a key role in maintaining circadian rhythms in rodents, irrespective of their temporal activity rhythm.


Subject(s)
Circadian Rhythm , Melatonin/analogs & derivatives , Murinae/physiology , Animals , Behavior, Animal , Female , Light , Locomotion , Male , Melatonin/urine , Murinae/metabolism , Urine
9.
Arch Environ Occup Health ; 72(2): 111-122, 2017 Mar 04.
Article in English | MEDLINE | ID: mdl-27029744

ABSTRACT

Widespread use of artificial light at night (ALAN) might contribute to the global burden of hormone-dependent cancers. Previous attempts to verify this association in population-level studies have been sparse. Using GLOBOCAN, US-DMSP, and World Bank 2010-2012 databases, we studied the association between ALAN and prostate cancer (PC) incidence in 180 countries worldwide, controlling for several country-level confounders. The PC-ALAN association emerged marginally significant when year-2012 PC age-standardized rate data were compared with ALAN levels (t = 1.886, p < .1); this association was more significant (t > 2.7; p < .01) when only 110 countries with well-maintained cancer registries were analyzed. Along with other variables, ALAN explains up to 79% of PC ASR variability. PC-ALAN association appears to vary regionally, with the greatest deviations in Central Africa, Small Island Developing States, Southeast Asia, and Gulf States.


Subject(s)
Electricity , Lighting/statistics & numerical data , Prostatic Neoplasms/epidemiology , Global Health , Guanosine Diphosphate , Humans , Incidence , Male , Registries , Residence Characteristics , Risk Factors
10.
Integr Cancer Ther ; 16(4): 451-463, 2017 12.
Article in English | MEDLINE | ID: mdl-27899698

ABSTRACT

Artificial light at night (ALAN) for elongating photophase is a new source of pollution. We examined the association between measured ALAN levels and breast cancer (BC) standard morbidity ratio (SMR) at a statistical area (SA) level in an urban environment. Sample size consisted of 266 new BC cases ages 35-74. Light measurements (lux) were performed in 11 SAs. A new calculated variable of morbidity per SA size (SMR35-74/km2) was correlated with the light variables per road length, using Pearson correlations (P < .05, 1-tailed). Looking for a light threshold, we correlated percentage of light points above SA light intensity median with SMR35-74/km2. SMR35-74/km2 was significantly and positively strongly correlated with mean, median, and standard-deviation (SD) light intensity per road length (r = .79, P < .01, R2 = .63; r = .77, P < .01, R2 = .59; and r = .79, P < .01, R2 = .63). Light threshold results demonstrate a marginally significant positive moderate correlation between percentage of points above 16.3 lux and SMR35-74/km2 (r = .48, P < .07; R2 = .23). In situ results support the hypothesis that outdoor ALAN illumination is associated with a higher BC-SMR in a specific area and age group. Moreover, we suggest an outdoor light threshold of approximately 16 lux as the minimal intensity to affect melatonin levels and BC morbidity. To the best of our knowledge, our attempt is the first to use this method and show such association between streetlight intensity and BC morbidity and therefore should be further developed.


Subject(s)
Breast Neoplasms/etiology , Light/adverse effects , Adult , Aged , Breast Neoplasms/metabolism , Circadian Rhythm/physiology , Female , Humans , Melatonin/metabolism , Middle Aged , Risk Factors
11.
Integr Cancer Ther ; 16(2): 176-187, 2017 06.
Article in English | MEDLINE | ID: mdl-27440788

ABSTRACT

Women are exposed to indoor and outdoor artificial light at night (ALAN) in urban and rural environments. Excessive exposure to hazardous ALAN containing short wavelength light may suppress pineal melatonin production and lead to an increased breast cancer (BC) risk. Our objective was to address the differences in BC risks related to light exposure in urban and rural communities. We examined indoor and outdoor light habits of BC patients and controls that had lived in urban and rural areas in a 5-year period, 10 to 15 years before the time of the study. Individual data, night time sleeping habits and individual exposure to ALAN habits were collected using a questionnaire. A total of 252 women (110 BC patients and 142 controls) participated in this study. The sample was divided to subgroups according to dwelling area and disease status. Age matching was completed between all subgroups. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated for urban and rural women separately, using binary logistic regression. OR results of urban population (92 BC patients and 72 control) revealed that BC risk increases with daily use of cellphone (OR = 2.13, 95% CI = 1.01-4.49, P < .05) and residence near strong ALAN sources (OR = 1.51, 95% CI = 0.99-2.30, P < .06). Nevertheless, BC risk decreases if a woman was born in Israel (OR = 0.44, 95% CI = 0.21-0.93, P < .03), longer sleep duration (OR = 0.75, 95% CI = 0.53-1.05, P < .1), and reading with bed light illumination before retiring to sleep (OR = 0.77, 95% CI = 0.61-0.96, P < .02). Furthermore, in the rural population (18 BC patients and 66 control) BC risk increases with the number of years past since the last menstruation (OR = 1.12, 95% CI = 1.03-1.22, P < .01). However, BC risk decreases with longer sleep duration (OR = 0.53, 95% CI = 0.24-1.14, P < .1), reading with room light illumination before retiring to sleep (OR = 0.55, 95% CI = 0.29-1.06, P < .07), and sleeping with closed shutters during the night (OR = 0.66, 95% CI = 0.41-1.04, P < .08). These data support the idea that indoor and outdoor nighttime light exposures differ between urban and rural women. Therefore, we suggest that women can influence BC risk and incidence by applying protective personal lighting habits. Further studies with larger sample sizes are needed to strengthen the results.


Subject(s)
Breast Neoplasms/etiology , Light/adverse effects , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Circadian Rhythm/physiology , Female , Habits , Humans , Incidence , Israel , Logistic Models , Melatonin/metabolism , Middle Aged , Odds Ratio , Risk Factors , Sleep/physiology
12.
Integr Cancer Ther ; 15(2): 145-52, 2016 06.
Article in English | MEDLINE | ID: mdl-26631258

ABSTRACT

Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Light/adverse effects , Adult , Aged , Aged, 80 and over , Breast Neoplasms/metabolism , Circadian Rhythm/physiology , Female , Habits , Humans , Incidence , Lighting/adverse effects , Melatonin/metabolism , Middle Aged , Risk Factors , Sleep/physiology , Surveys and Questionnaires
13.
Chronobiol Int ; 32(6): 757-73, 2015.
Article in English | MEDLINE | ID: mdl-26102518

ABSTRACT

In a study published in Cancer Causes & Control in 2010, Kloog with co-authors tested, apparently for the first time, the association between population-level ambient exposure to artificial light at night (ALAN) and incidence of several cancers in women from 164 countries worldwide. The study was based on 1996-2002 data and concluded that breast cancer (BC) incidence was significantly and positively associated with ALAN, while no such association was revealed for other cancer types. An open question, however, remains whether the trends revealed by Kloog and co-authors were time specific or also hold true for more recent data. Using information obtained from the GLOBOCAN, US-DMSP and World Bank's 2002 and 2012 databases, we reanalyzed the strength of association between BC incidence rates in 180 countries worldwide and ALAN, controlling for several country-level predictors, including birth rates, percent of urban population, per capita GDP and electricity consumption. We also compared BC age-standardized rates (ASRs) with multi-annual ALAN measurements, considering potentially different latency periods. Compared with the results of Kloog et al.'s analysis of the year-2002 BC-data, the association between BC and ALAN appears to have weakened overall, becoming statistically insignificant in the year 2012 after being controlled for potential confounders (t < 0.3; p > 0.5). However, when the entire sample of countries was disaggregated into geographic clusters of similarly developed countries, a positive BC-ALAN association re-emerged as statistically significant (t > 2.2; p < 0.01), helping to explain, along with other factors covered by the analysis, about 65-85% of BC ASR variability worldwide, depending on the model type. Although the present analysis reconfirms a positive BC-ALAN association, this association appeared to diverge regionally in recent years, with countries in Western Europe showing the highest levels of such association, while countries in Southeast Asia and Gulf States exhibiting relatively low BC rates against the backdrop of relatively high ALAN levels. This regional stratification may be due to additional protective mechanisms, diminishing BC risks and potentially attributed to the local diet and lifestyles.


Subject(s)
Breast Neoplasms/epidemiology , Light , Lighting/adverse effects , Breast Neoplasms/diagnosis , Circadian Rhythm , Databases, Factual , Diet , Female , Global Health , Humans , Incidence , Life Style , Models, Statistical , Risk Factors , Urban Population
15.
Philos Trans R Soc Lond B Biol Sci ; 370(1667)2015 May 05.
Article in English | MEDLINE | ID: mdl-25780234

ABSTRACT

The adverse effects of excessive use of artificial light at night (ALAN) are becoming increasingly evident and associated with several health problems including cancer. Results of epidemiological studies revealed that the increase in breast cancer incidents co-distribute with ALAN worldwide. There is compiling evidence that suggests that melatonin suppression is linked to ALAN-induced cancer risks, but the specific genetic mechanism linking environmental exposure and the development of disease is not well known. Here we propose a possible genetic link between environmental exposure and tumorigenesis processes. We discuss evidence related to the relationship between epigenetic remodelling and oncogene expression. In breast cancer, enhanced global hypomethylation is expected in oncogenes, whereas in tumour suppressor genes local hypermethylation is recognized in the promoter CpG chains. A putative mechanism of action involving epigenetic modifications mediated by pineal melatonin is discussed in relation to cancer prevalence. Taking into account that ALAN-induced epigenetic modifications are reversible, early detection of cancer development is of great significance in the treatment of the disease. Therefore, new biomarkers for circadian disruption need to be developed to prevent ALAN damage.


Subject(s)
Epigenesis, Genetic , Epigenomics , Gene Expression Regulation/radiation effects , Lighting/adverse effects , Melatonin/metabolism , Circadian Rhythm , Environmental Monitoring , Environmental Pollution , Humans
16.
Article in English | MEDLINE | ID: mdl-24674819

ABSTRACT

A comparative study of reproduction revealed differences between desert-adapted Acomys russatus and Mediterranean Acomys cahirinus populations with respect to the environmental cues used for reproductive activity. Long day (LD) conditions were noted as initial reproductive cue for both populations. This research is a follow-up affects comparative endocrine and metabolic study in regards to reproduction where LD-acclimated mice were treated with, exogenous aldosterone (ALDO) and melatonin (MLT). Only the reproductive system of A. russatus females was significantly affected by both hormones. In A. cahirinus females, MLT decreased leptin levels, while in A. russatus, a treatment with both hormones increased leptin levels. In A. russatus males, MLT affects both reproductive and metabolic functions. However, in A. cahirinus males, ALDO and MLT treatments caused an increase in leptin levels, and a decrease in free fatty acid (FFA) levels, respectively. Correlations between leptin and FFA in general were affected by both MLT and ALDO treatments in A. russatus males and A. cahirinus females. Our results support the general idea, that although the reproductive system of A. russatus responded to an osmotic stress, in our case expressed by ALDO treatment, which can be considered as an ultimate signal, where, photoperiod changes are an initial signal.

17.
Chronobiol Int ; 31(1): 144-50, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24131150

ABSTRACT

Light-at-night (LAN) is a worldwide problem co-distributed with breast cancer prevalence. We hypothesized that exposure to LAN is coincided with a decreased melatonin (MLT) secretion level, followed by epigenetic modifications and resulted in higher breast cancer tumors growth-rate. Accordingly, we studied the effect of LAN exposure and exogenous MLT on breast cancer tumors growth-rate. 4T1 cells were inoculated into BALB/c short day-acclimated mice, resulting in tumors growth. Growth rates were followed under various light exposures and global DNA methylations were measured. Results demonstrated the positive effect of LAN on tumors growth-rate, reversed by MLT through global DNA methylation.


Subject(s)
Circadian Rhythm , DNA Methylation , Light , Mammary Neoplasms, Experimental/pathology , Melatonin/biosynthesis , Photoperiod , Animals , Epigenesis, Genetic , Female , Mammary Neoplasms, Experimental/etiology , Melatonin/analogs & derivatives , Melatonin/urine , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Pineal Gland/metabolism , Signal Transduction
18.
Int J Dev Biol ; 58(9): 677-92, 2014.
Article in English | MEDLINE | ID: mdl-25896204

ABSTRACT

The patterning of the modular body plan in colonial organisms is termed astogeny, as distinct from ontogeny, the development of an individual organism from embryo to adult. Evolutionarily conserved signaling pathways suggest shared roots and common uses for both ontogeny and astogeny. Botryllid ascidians, a widely dispersed group of colonial tunicates, exhibit an intricate modular life form, in which astogeny develops as weekly, highly synchronized growth/death cycles termed blastogenesis, abiding by a strictly regulated plan. In these organisms both astogeny and ontogeny form similar body structures. Working on Botryllus schlosseri, and choosing a representative gene from each of three key Signal Transduction Pathways (STPs: Wnt/ß-catenin; TGF-ß, MAPK/ERK), we explored and compared gene expression at different stages of ontogeny and blastogenesis. Protein expression was studied via immunohistochemistry, ELISA and Western blotting. Five specific inhibitors and an activator for the selected pathways were used and followed to assess their impact during the blastogenic cycle and the development of distinctive phenotypes. Outcomes show that STPs are activated and function (while not necessarily co-localized) during both ontogeny and astogeny. Cellular patterns in blastogenesis, such as colony architecture, are shaped by these STPs. These results are further supported by administering Wnt agonist and anatagonist, TGF-ß receptor antagonists and inhibitors of Mek1/Mek2. Independent of their expression during ontogeny, some of the spatiotemporal patterns of STPs developed within short blastogenic windows. The results support the notion that while the same molecular machinery is functioning in Botryllus schlosseri astogeny and ontogeny, astogenic development is not an ontogenic replicate.


Subject(s)
Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Signal Transduction , Transforming Growth Factor beta/metabolism , Urochordata/metabolism , Wnt Proteins/metabolism , Amino Acid Sequence , Animals , Biological Evolution , Blotting, Western , Cells, Cultured , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Immunoenzyme Techniques , Molecular Sequence Data , Phosphorylation/drug effects , Sequence Homology, Amino Acid , Transforming Growth Factor beta/antagonists & inhibitors , Urochordata/growth & development , Wnt Proteins/antagonists & inhibitors
19.
J Exp Biol ; 216(Pt 18): 3495-503, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23737564

ABSTRACT

We tested the effects of photoperiod, water and food availability on body mass, reproductive status and arginine vasopressin receptor 1A (Avpr1a) mRNA expression in males of desert-adapted golden spiny mice, Acomys russatus. In Experiment 1, males were acclimated to short-day (SD; 8 h:16 h light:dark) or long-day (LD; 16 h:8 h light:dark) photoperiods with either saline (control) or vasopressin treatment for 3 weeks. The results of this experiment revealed that under control conditions, SD mice increased body mass by ~5% while LD mice decreased it by ~4%. SD photoperiod had no effect on reproductive status and leptin levels, whereas LD males increased testes mass and serum testosterone, but the photoperiod had no effect on leptin levels. Vasopressin administration decreased LD-induced reproductive enhancement. Because no consistent effect of SD treatment was found on reproductive status, Experiment 2 was carried out only on LD-acclimated males kept under 75% food restriction (decrease from ad libitum) with saline or leptin treatment. Body mass, testes mass, serum testosterone, leptin concentrations and Avpr1a mRNA expression were measured. Food restriction remarkably decreased body mass, with a more potent effect in leptin-treated males, showing enhanced reproductive status and a significant increase in serum leptin compared with controls. Avpr1a expression was significantly upregulated in LD, vasopressin-treated and food-restricted males, with higher levels in the hypothalamus compared with the testes. We conclude that in A. russatus, LD photoperiod interacts with water and food availability to advance reproductive responses. Avpr1a is suggested to integrate nutritional and osmotic signals to optimize reproduction by modulating reproductive and energetic neuroendocrine axes at the central level. The interaction between photoperiod and other environmental cues is of an adaptive value to desert-adapted small rodents for timing reproduction in unpredictable ecosystems such as extreme deserts.


Subject(s)
Food Deprivation , Murinae/physiology , Photoperiod , Receptors, Vasopressin/genetics , Reproduction/physiology , Vasopressins/metabolism , Animals , Body Weight , Gene Expression Regulation , Leptin/blood , Male , Models, Biological , Murinae/blood , Murinae/genetics , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Vasopressin/metabolism , Reproduction/genetics , Testosterone/blood
20.
Article in English | MEDLINE | ID: mdl-23608365

ABSTRACT

Light at Night (LAN) suppresses melatonin (MLT) production, and effects metabolism, hormone secretion, gene expression and enzyme activity. Changes in antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD), can be used as an indication for oxidative stress level. We assayed activity and expression of these enzymes in the liver of Acomys russatus exposed to LAN and treated with MLT. Short day (SD)-acclimated A. russatus, was exposed to 30min of LAN for two, seven or 21 nights. MLT impact was assessed simultaneously with two and seven nights of LAN exposure. GPx and SOD activities were measured. Gpx1 expression was evaluated by RT-PCR. There was a significant increase in GPx activity following LAN exposure for all acclimation durations, GPx activity was elevated after two nights of LAN and MLT treatment, Gpx1 expression was elevated by MLT after seven nights of LAN. SOD activity increased after two nights of LAN in MLT-treated A. russatus, GPx activity increased with the duration of LAN acclimation, indicating changes in liver redox status. Our results suggest that LAN is a stressor that influences oxidative stress. As in the other studies, MLT increases antioxidant activities, presumably attenuating stress response, in order to restore homeostasis.


Subject(s)
Liver/enzymology , Liver/metabolism , Murinae/metabolism , Oxidative Stress/physiology , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Darkness , Glutathione Peroxidase/metabolism , Light , Male , Melatonin/metabolism , Mice , Oxidation-Reduction , Superoxide Dismutase/metabolism , Glutathione Peroxidase GPX1
SELECTION OF CITATIONS
SEARCH DETAIL
...