Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 10(3): e0068422, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35604159

ABSTRACT

Superinfection exclusion (SIE) is a phenomenon in which a primary viral infection interferes with secondary viral infections within that same cell. Although SIE has been observed across many viruses, it has remained relatively understudied. A recently characterized glycoprotein D (gD)-independent SIE of alphaherpesviruses presents a novel mechanism of coinfection restriction for herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). In this study, we evaluated the role of multiplicity of infection (MOI), receptor expression, and trafficking of virions to gain greater insight into potential mechanisms of alphaherpesvirus SIE. We observed that high-MOI secondary viral infections were able to overcome SIE in a manner that was independent of receptor availability. We next assessed virion localization during SIE through live microscopy of fluorescently labeled virions and capsid assemblies. Analysis of these fluorescent assemblies identified changes in the distribution of capsids during SIE. These results indicate that SIE during PRV infection inhibits viral entry or fusion while HSV-1 SIE inhibits infection through a postentry mechanism. Although the timing and phenotype of SIE are similar between alphaherpesviruses, the related viruses implement different mechanisms to restrict coinfection. IMPORTANCE Most viruses utilize a form of superinfection exclusion to conserve resources and control population dynamics. gD-dependent superinfection exclusion in alphaherpesviruses is well documented. However, the undercharacterized gD-independent SIE provides new insight into how alphaherpesviruses limit sequential infection. The observations described here demonstrate that gD-independent SIE differs between PRV and HSV-1. Comparing these differences provides new insights into the underlying mechanisms of SIE implemented by two related viruses.


Subject(s)
Coinfection , Herpesvirus 1, Human , Herpesvirus 1, Suid , Superinfection , Animals , Virion
2.
Viruses ; 13(4)2021 03 26.
Article in English | MEDLINE | ID: mdl-33810401

ABSTRACT

The risk posed by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) dictates that live-virus research is conducted in a biosafety level 3 (BSL3) facility. Working with SARS-CoV-2 at lower biosafety levels can expedite research yet requires the virus to be fully inactivated. In this study, we validated and compared two protocols for inactivating SARS-CoV-2: heat treatment and ultraviolet irradiation. The two methods were optimized to render the virus completely incapable of infection while limiting the destructive effects of inactivation. We observed that 15 min of incubation at 65 °C completely inactivates high titer viral stocks. Complete inactivation was also achieved with minimal amounts of UV power (70,000 µJ/cm2), which is 100-fold less power than comparable studies. Once validated, the two methods were then compared for viral RNA quantification, virion purification, and antibody detection assays. We observed that UV irradiation resulted in a 2-log reduction of detectable genomes compared to heat inactivation. Protein yield following virion enrichment was equivalent for all inactivation conditions, but the quality of resulting viral proteins and virions were differentially impacted depending on inactivation method and time. Here, we outline the strengths and weaknesses of each method so that investigators might choose the one which best meets their research goals.


Subject(s)
COVID-19/virology , Disinfection/methods , SARS-CoV-2/radiation effects , Virion/radiation effects , Virus Inactivation/radiation effects , Disinfection/instrumentation , Hot Temperature , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Ultraviolet Rays , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/chemistry , Virion/genetics , Virion/physiology
3.
Virus Res ; 260: 53-59, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30359622

ABSTRACT

Fowlpox virus (FWPV), the type species of the genus Avipoxvirus family Poxviridae, is a large double-stranded DNA virus that causes fowlpox in chickens and turkeys. Notably, sequences of the avian retrovirus reticuloendotheliosis virus (REV) are frequently found integrated into the genome of FWPV. While some FWPV strains carry remnants of the REV long terminal repeats (LTRs), other strains have been shown to contain insertions of nearly the full-length REV provirus in their genome. In the present study we detected heterogeneous FWPV populations carrying the REV LTR or the near full-length REV provirus genome in a Merriam's wild turkey (Meleagris gallopavo merriami). The bird presented papules distributed throughout the non-feathered areas of the head. Avipoxvirus-like virions were observed in the lesions by transmission electron microscopy and the presence of FWPV was confirmed by DNA sequencing. Metagenomic sequencing performed on nucleic acid extracted from the skin lesions revealed two FWPV genome populations carrying either a 197-nt remnant of the REV LTR or a 7939-nt long fragment corresponding to the full-length REV provirus. Notably, PCR amplification using primers targeting FWPV sequences flanking the REV insertion site, confirmed the natural occurrence of the heterogeneous FWPV genome populations in one additional clinical sample from another turkey affected by fowlpox. Additionally, sequencing of a historical FWPV isolate obtained from chickens in the US in 2000 also revealed the presence of the two FWPV-REV genome populations. Results here demonstrate distinct FWPV populations containing variable segments of REV genome integrated into their genome. These distinct genome populations are likely a result of homologous recombination events that take place during FWPV replication.


Subject(s)
Fowlpox virus/genetics , Fowlpox/virology , Reticuloendotheliosis virus/genetics , Turkeys/virology , Animals , Fowlpox/pathology , Fowlpox virus/isolation & purification , Genome, Viral , Metagenomics , Microscopy, Electron, Transmission , Polymerase Chain Reaction , Sequence Analysis, DNA , Skin/pathology , Skin/virology , Terminal Repeat Sequences , Virus Integration
4.
Arch Virol ; 163(9): 2327-2335, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29725899

ABSTRACT

Passive immunity is critical for protection of neonatal piglets against porcine epidemic diarrhea virus (PEDV). Here, we investigated the immunogenicity of an orf virus (ORFV) vector expressing the full-length spike (S) protein of PEDV (ORFV-PEDV-S) in pregnant gilts and its ability to confer passive immunity and protection in piglets. Three doses of ORFV-PEDV-S were given to two groups of PEDV-negative pregnant gilts, with the last dose being administered two weeks prior to farrowing. One of the two groups immunized with the ORFV-PEDV-S recombinant virus was also exposed to live PEDV orally on day 31 post-immunization (pi). Antibody responses were assessed in serum, colostrum and milk of immunized gilts, and passive transfer of antibodies was evaluated in piglet sera. The protective efficacy of ORFV-PEDV-S was evaluated after challenge of the piglets with PEDV. PEDV-specific IgG, IgA and neutralizing antibody (NA) responses were detected in ORFV-PEDV-S-immunized and ORFV-PEDV-S-immunized/PEDV-exposed gilts. PEDV NA, IgG and IgA were detected in the serum of piglets born to immunized gilts, demonstrating the transfer of antibodies through colostrum and milk. Piglets born to immunized gilts showed reduced morbidity and a marked reduction in mortality after PEDV challenge in comparison to control piglets. Piglets born to gilts that received ORFV-PEDV-S and were exposed to live PEDV showed stronger NA responses and lower clinical scores when compared to piglets born to gilts immunized with ORFV-PEDV-S alone. These results demonstrate the potential of ORFV as a vaccine delivery platform capable of eliciting passive immunity against PEDV.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/prevention & control , Immunity, Maternally-Acquired , Orf virus/immunology , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Swine Diseases/prevention & control , Animals , Animals, Newborn , Antibodies, Neutralizing/blood , Colostrum , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/chemistry , Genetic Vectors/immunology , Immunization, Passive/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Milk , Orf virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , Pregnancy , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Swine , Swine Diseases/immunology , Swine Diseases/virology
5.
Virology ; 509: 185-194, 2017 09.
Article in English | MEDLINE | ID: mdl-28647506

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) spike (S) protein is the major target of neutralizing antibodies against PEDV. Here immunodominant neutralizing epitopes of PEDV were identified using a panel of S-specific monoclonal antibodies (mAbs). Ten of eleven S-specific mAbs successfully neutralized PEDV infectivity in vitro. Notably, epitope mapping by peptide ELISAs revealed that nine of these mAbs recognized linear neutralizing epitopes located in the N-terminus of the S2 glycoprotein subunit (amino acids [aa] 744-759, 747-774 and/or 756-771). Additionally, one mAb recognized a neutralizing epitope located in the C-terminus of S2 (aa 1371-1377), while only one neutralizing mAb reacted against a region of the S1 glycoprotein subunit (aa 499-600). Notably, mAbs that recognized epitopes within the S2 subunit presented the highest neutralizing activity against PEDV. Together these results indicate that the S2 glycoprotein subunit contains major antigenic determinants and, perhaps, the immunodominant neutralizing epitopes of PEDV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitopes, B-Lymphocyte/immunology , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Immunodominant Epitopes/immunology , Neutralization Tests
6.
J Gen Virol ; 97(10): 2719-2731, 2016 10.
Article in English | MEDLINE | ID: mdl-27558814

ABSTRACT

The parapoxvirus Orf virus (ORFV), has long been recognized for its immunomodulatory properties in permissive and non-permissive animal species. Here, a new recombinant ORFV expressing the full-length spike (S) protein of Porcine epidemic diarrhea virus (PEDV) was generated and its immunogenicity and protective efficacy were evaluated in pigs. The PEDV S was inserted into the ORFV121 gene locus, an immunomodulatory gene that inhibits activation of the NF-κB signalling pathway and contributes to ORFV virulence in the natural host. The recombinant ORFV-PEDV-S virus efficiently and stably expressed the PEDV S protein in cell culture in vitro. Three intramuscular (IM) immunizations with the recombinant ORFV-PEDV-S in 3-week-old pigs elicited robust serum IgG, IgA and neutralizing antibody responses against PEDV. Additionally, IM immunization with the recombinant ORFV-PEDV-S virus protected pigs from clinical signs of porcine epidemic diarrhoea (PED) and reduced virus shedding in faeces upon challenge infection. These results demonstrate the suitability of ORFV121 gene locus as an insertion site for heterologous gene expression and delivery by ORFV-based viral vectors. Additionally, the results provide evidence of the potential of ORFV as a vaccine delivery vector for enteric viral diseases of swine. This study may have important implications for future development of ORFV-vectored vaccines for swine.


Subject(s)
Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Swine Diseases/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Genetic Vectors/genetics , Genetic Vectors/metabolism , Immunization , Parapoxvirus/genetics , Parapoxvirus/metabolism , Porcine epidemic diarrhea virus/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Swine , Swine Diseases/prevention & control , Swine Diseases/virology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
7.
J Clin Microbiol ; 54(6): 1536-1545, 2016 06.
Article in English | MEDLINE | ID: mdl-27030489

ABSTRACT

Senecavirus A (SVA) is an emerging picornavirus that has been recently associated with an increased number of outbreaks of vesicular disease and neonatal mortality in swine. Many aspects of SVA infection biology and epidemiology remain unknown. Here, we present a diagnostic investigation conducted in swine herds affected by vesicular disease and increased neonatal mortality. Clinical and environmental samples were collected from affected and unaffected herds and were screened for the presence of SVA by real-time reverse transcriptase PCR and virus isolation. Notably, SVA was detected and isolated from vesicular lesions and tissues of affected pigs, environmental samples, mouse feces, and mouse small intestine. SVA nucleic acid was also detected in houseflies collected from affected farms and from a farm with no history of vesicular disease. Detection of SVA in mice and housefly samples and recovery of viable virus from mouse feces and small intestine suggest that these pests may play a role on the epidemiology of SVA. These results provide important information that may allow the development of improved prevention and control strategies for SVA.


Subject(s)
Disease Outbreaks , Environmental Microbiology , Houseflies/virology , Mice/virology , Picornaviridae/isolation & purification , Swine Vesicular Disease/epidemiology , Swine Vesicular Disease/virology , Animals , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...