Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131673

ABSTRACT

Triple-negative breast cancers (TNBCs) tend to become highly invasive early during cancer development. Despite some successes in the initial treatment of patients diagnosed with early-stage localized TNBC, the rate of metastatic recurrence remains high with poor long-term survival outcomes. Here we show that elevated expression of the serine/threonine-kinase, Calcium/Calmodulin (CaM)-dependent protein kinase kinase-2 (CaMKK2), is highly correlated with tumor invasiveness. We determined that genetic disruption of CaMKK2 expression, or inhibition of its activity, disrupted spontaneous metastatic outgrowth from primary tumors in murine xenograft models of TNBC. High-grade serous ovarian cancer (HGSOC), a high-risk, poor-prognosis ovarian cancer subtype, shares many genetic features with TNBC, and importantly, CaMKK2 inhibition effectively blocked metastatic progression in a validated xenograft model of this disease. Probing the mechanistic links between CaMKK2 and metastasis we defined the elements of a new signaling pathway that impacts actin cytoskeletal dynamics in a manner which increases cell migration/invasion and metastasis. Notably, CaMKK2 increases the expression of the phosphodiesterase PDE1A which decreases the cGMP-dependent activity of protein kinase G1 (PKG1). This inhibition of PKG1 results in decreased phosphorylation of Vasodilator-Stimulated Phosphoprotein (VASP), which in its hypophosphorylated state binds to and regulates F-actin assembly to facilitate contraction/cell movement. Together, these data establish a targetable CaMKK2-PDE1A-PKG1-VASP signaling pathway that controls cancer cell motility and metastasis. Further, it credentials CaMKK2 as a therapeutic target that can be exploited in the discovery of agents for use in the neoadjuvant/adjuvant setting to restrict tumor invasiveness in patients diagnosed with early-stage TNBC or localized HGSOC.

2.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34637400

ABSTRACT

Immune checkpoint blockade (ICB) therapies have significantly prolonged patient survival across multiple tumor types, particularly in melanoma. Interestingly, sex-specific differences in response to ICB have been observed, with males receiving a greater benefit from ICB than females, although the mechanism or mechanisms underlying this difference are unknown. Mining published transcriptomic data sets, we determined that the response to ICBs is influenced by the functionality of intratumoral macrophages. This puts into context our observation that estrogens (E2) working through the estrogen receptor α (ERα) stimulated melanoma growth in murine models by skewing macrophage polarization toward an immune-suppressive state that promoted CD8+ T cell dysfunction and exhaustion and ICB resistance. This activity was not evident in mice harboring macrophage-specific depletion of ERα, confirming a direct role for estrogen signaling within myeloid cells in establishing an immunosuppressed state. Inhibition of ERα using fulvestrant, a selective estrogen receptor downregulator (SERD), decreased tumor growth, stimulated adaptive immunity, and increased the antitumor efficacy of ICBs. Further, a gene signature that determines ER activity in macrophages predicted survival in patients with melanoma treated with ICB. These results highlight the importance of E2/ER signaling as a regulator of intratumoral macrophage polarization, an activity that can be therapeutically targeted to reverse immune suppression and increase ICB efficacy.


Subject(s)
Estrogens/metabolism , Melanoma/immunology , Myeloid Cells/metabolism , Signal Transduction , Skin Neoplasms/immunology , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Female , Fulvestrant/pharmacology , Humans , Immune System , Macrophages/metabolism , Melanoma/metabolism , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , RNA, Small Cytoplasmic/metabolism , Receptors, Estrogen , Skin Neoplasms/metabolism
3.
Essays Biochem ; 65(6): 985-1001, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34328178

ABSTRACT

Nearly 80% of all breast cancers are estrogen receptor positive (ER+) and require the activity of this transcription factor for tumor growth and survival. Thus, endocrine therapies, which target the estrogen signaling axis, have and will continue to be the cornerstone of therapy for patients diagnosed with ER+ disease. Several inhibitors of ER activity exist, including aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders/down-regulators (SERDs), and ER proteolysis-targeting chimeras (ER PROTACs); drugs which differ in the mechanism(s) by which they inhibit this signaling pathway. Notwithstanding their significant impact on the management of this disease, resistance to existing endocrine therapies remains a major impediment to durable clinical responses. Although the mechanisms of resistance are complex and varied, dependence on ER is typically retained after progression on SERMs and AIs, suggesting that ER remains a bona fide therapeutic target. The discovery and development of orally bioavailable drugs that eliminate ER expression (SERDs and ER PROTACs) will likely aid in treating this growing patient population. All of the existing endocrine therapies were developed with the intent of inhibiting the cancer cell intrinsic actions of ER and/or with the objective of achieving extreme estrogen deprivation and most achieve that goal. A longstanding question that remains to be addressed, however, is how actions of existing interventions extrinsic to the cancer cells influence tumor biology. We believe that these issues need to be addressed in the development of strategies to develop the next generation of ER-modulators optimized for positive activities in both cancer cells and other cells within the tumor microenvironment (TME).


Subject(s)
Breast Neoplasms , Receptors, Estrogen , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Humans , Receptors, Estrogen/metabolism , Receptors, Estrogen/therapeutic use , Selective Estrogen Receptor Modulators/pharmacology , Selective Estrogen Receptor Modulators/therapeutic use , Signal Transduction , Tumor Microenvironment
4.
Carcinogenesis ; 41(12): 1660-1670, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32894276

ABSTRACT

Over 70% of breast cancers express the estrogen receptor (ER) and depend on ER activity for survival and proliferation. While hormone therapies that target receptor activity are initially effective, patients invariably develop resistance which is often associated with activation of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. While the mechanism by which estrogen regulates proliferation is not fully understood, one gene target of ER, growth regulation by estrogen in breast cancer 1 (GREB1), is required for hormone-dependent proliferation. However, the molecular function by which GREB1 regulates proliferation is unknown. Herein, we validate that knockdown of GREB1 results in growth arrest and that exogenous GREB1 expression initiates senescence, suggesting that an optimal level of GREB1 expression is necessary for proliferation of breast cancer cells. Under both of these conditions, GREB1 is able to regulate signaling through the PI3K/Akt/mTOR pathway. GREB1 acts intrinsically through PI3K to regulate phosphatidylinositol (3,4,5)-triphosphate levels and Akt activity. Critically, growth suppression of estrogen-dependent breast cancer cells by GREB1 knockdown is rescued by expression of constitutively activated Akt. Together, these data identify a novel molecular function by which GREB1 regulates breast cancer proliferation through Akt activation and provides a mechanistic link between estrogen signaling and the PI3K pathway.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Estrogen/metabolism , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Neoplasm Proteins/genetics , Phosphatidylinositol 3-Kinase/genetics , Proto-Oncogene Proteins c-akt/genetics , Tumor Cells, Cultured
5.
Endocr Relat Cancer ; 25(7): 735-746, 2018 07.
Article in English | MEDLINE | ID: mdl-29695586

ABSTRACT

Activation of the transcription factor estrogen receptor α (ERα) and the subsequent regulation of estrogen-responsive genes play a crucial role in the development and progression of the majority of breast cancers. One gene target of ERα, growth regulation by estrogen in breast cancer 1 (GREB1), is associated with proliferation and regulation of ERα activity in estrogen-responsive breast cancer cells. The GREB1 gene encodes three distinct isoforms: GREB1a, GREB1b and GREB1c, whose molecular functions are largely unknown. Here, we investigate the role of these isoforms in regulation of ERα activity and proliferation. Interaction between GREB1 and ERα was mapped to the amino terminus shared by all GREB1 variants. Analysis of isoform-specific regulation of ERα activity suggests none of the GREB1 isoforms possess potent co-regulator activity. Exogenous expression of GREB1a resulted in elevated expression of some ER-target genes, independent of ERα activity. Despite this slight specificity of GREB1a for gene regulation, exogenous expression of either GREB1a or GREB1b resulted in decreased proliferation in both ER-positive and ER-negative breast carcinoma cell lines, demonstrating an ER-independent function of GREB1. Interestingly, we show an increase in the expression of GREB1b and GREB1c mRNA in malignant breast tissue compared to normal patient samples, suggesting a selective preference for these isoforms during malignant transformation. Together, these data suggest GREB1a has an isoform-specific function as a transcriptional regulator while all isoforms share an ER-independent activity that regulates proliferation.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/metabolism , Neoplasm Proteins/therapeutic use , Protein Isoforms/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Humans , Neoplasm Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...