Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biomolecules ; 9(5)2019 05 08.
Article in English | MEDLINE | ID: mdl-31072013

ABSTRACT

Neuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as 'melanins' are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration. This linkage is best illustrated by Parkinson's disease, which is characterized by the loss of pigmented dopaminergic neurons and the 'white brain' pathological state. As such, the ability to determine the binding affinity of neurotoxic agents, as well as any potential specific endogenous ligands to neuromelanin are of interest and potential value. Neuromelanin has been shown to have saturable binding interactions with nicotine as monitored by a fluorimeter. This interaction provides a signal to allow for a competition-binding assay with target molecules which do not themselves produce signal. The current report establishes the viability of this competition assay toward three compounds with central relevance to Parkinson's disease. The Kd of binding toward neuromelanin by methyl-phenyl-pyridinium ion (MPP+), dopamine, and 6-hydroxydopamine were found to be 1 mM, 0.05 mM, and 0.1 mM, respectively in the current study. In addition, we demonstrate that 6-hydroxydopamine polymerizes to form neuromelanin granules in cultured dopaminergic neurons that treated with 2,4,5-trihydroxy-l-phenylalanine. Immunohistochemical analysis using fluor-tagged anti-dopamine antibodies suggests that the incorporation of 6-hydroxydopamine (following internalization and decarboxylation analogous to levodopa and dopamine) alters the localized distribution of bound dopamine in these cells.


Subject(s)
Binding, Competitive , Biological Assay , Melanins/metabolism , Animals , Catecholamines/metabolism , Cells, Cultured , Humans , Nicotine/metabolism , Nicotine/pharmacology , Oxidation-Reduction , Oxidopamine/metabolism , Polymerization , Rats , Signal Transduction , Spectrometry, Fluorescence
2.
Neural Regen Res ; 12(3): 372-375, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28469642

ABSTRACT

The loss of pigmented neurons from the human brain has long been the hallmark of Parkinson's disease (PD). Neuromelanin (NM) in the pre-synaptic terminal of dopamine neurons is emerging as a primary player in the etiology of neurodegenerative disorders including PD. This mini-review discusses the interactions between neuromelanin and different molecules in the synaptic terminal and describes how these interactions might affect neurodegenerative disorders including PD. Neuromelanin can reversibly bind and interact with amine containing neurotoxins, e.g., MPTP, to augment their actions in the terminal, eventually leading to the instability and degeneration of melanin-containing neurons due to oxidative stress and mitochondrial dysfunction. In particular, neuromelanin appears to confer susceptibility to chemical toxicity by providing a large sink of iron-bound, heme-like structures in a pi-conjugated system, a system seemingly purposed to allow for stabilizing interactions including pi-stacking as well as ligand binding to iron. Given the progressive accumulation of NM with age corresponding with an apparent decrease in dopamine synthetic pathways, the immediate question of whether NM is also capable of binding dopamine, the primary functional monoamine utilized in this cell, should be raised. Despite the rather glaring implications of this finding, this idea appears not to have been adequately addressed. As such, we postulate on potential mechanisms by which dopamine might dissociate from neuromelanin and the implications of such a reversible relationship. Intriguingly, if neuromelanin is able to sequester and release dopamine in membrane bound vesicles, this intracellular pre-synaptic mechanism could be the basis for a form of chemical memory in dopamine neurons.

3.
Neurochem Res ; 41(12): 3356-3363, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27662849

ABSTRACT

Neuromelanin (NM) has long been considered as an aging pigment, perhaps an unavoidable and undesirable byproduct of dopaminergic neural transmission. However, NM is carefully packaged into double membrane-bound structures within cells of the substantia nigra and other neural tissues, suggesting a beneficial function to maintaining these stores. It is well established that NM is able to concentrate toxic xenobiotics within pigmented cells due to its unique chemical environment. In doing so, such agents may confer susceptibility to Parkinson's disease (PD) as illustrated by model PD-inducing neurotoxins such as methyl-phenyl-pyridinium ion. It is possible that high-affinity binding interactions toward NM may contribute to the adverse effects of PD-inducing toxins, as well as neuroprotective agents. Here we aim to develop a generalized assay capable of elucidating the binding constants of chemical agents to synthetic and natural neuromelanins. Toward this end, a model neuromelanin synthesized from dopamine and cysteine was prepared according to published procedure. Using a UV/Visible spectroscopic assay, we show that dopamine, 6-hydroxy dopamine, and nicotine bind to the synthetic neuromelanin, while caffeine did not. More importantly, nicotine was further found to induce a fluorescence signal in the presence of NM which was used to establish a binding constant estimated at 0.65 mM. Dopamine appears to enhance this signal, also in a saturable manner, with an estimated Kd of 0.05 mM in our isolated chemical system. In summary, the micro-scale fluorescence assay described herein will allow us to overcome many of the problems inherent in the study of chemical interaction with NM through traditional spectroscopic means. Using a single standardized signal, it should now be possible to rank a number of PD-related toxins based on NM-binding affinity and shed further light on this important problem.


Subject(s)
Melanins/chemistry , Nicotine/chemistry , Caffeine/chemistry , Cysteine/chemistry , Dopamine/chemistry , Iron/chemistry , Melanins/chemical synthesis , Oxidopamine/chemistry , Parkinson Disease , Polymerization , Spectrometry, Fluorescence
4.
Drug Metab Dispos ; 37(1): 1-4, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18838503

ABSTRACT

The objectives of this study were to compare the drug-metabolizing activity of human CYP2D6.24 (I297L), CYP2D6.26 (I369T), and CYP2D6.27 (E410K) allelic isoforms with wild-type CYP2D6.1 and to express the CYP2D7 protein derived from an indel polymorphism (CYP2D7 138delT) and investigate its possible codeine O-demethylase activity. Successful creation of individual cDNAs corresponding to CYP2D6*24 (2853 A>C), CYP2D6*26 (3277 T>C), and CYP2D6*27 (3853 G>A) allelic variants and CYP2D7 was achieved via molecular cloning. The corresponding proteins, CYP2D6.24, CYP2D6.26, CYP2D6.27, and CYP2D7, were expressed in insect cells by using a baculovirus-mediated expression system. All CYP2D proteins showed the empirical carbon monoxide difference spectra. We were surprised to find that the CYP2D7 protein was detected mainly in mitochondrial fractions, whereas all CYP2D6 allelic isoforms were present in the microsomal fraction. Furthermore, CYP2D7 did not produce any morphine from codeine. In contrast, CYP2D6.24, CYP2D6.26, and CYP2D6.27 allelic isoforms all showed active drug-metabolizing activities toward both codeine and dextromethorphan O-demethylation. Whereas CYP2D6.24 exhibited the highest intrinsic clearance in dextromethorphan O-demethylation (approximately 6-fold higher than that by CYP2D6.1), it had the lowest enzyme efficiency in codeine O-demethylation (approximately 50% lower than that by CYP2D6.1). Overall, the enzymatic consequences of CYP2D6 allelic isozymes are substrate dependent. These data would help preclinical and clinical assessments of the metabolic elimination of drugs that are mediated by human CYP2D enzyme.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Isoenzymes/metabolism , Alleles , Base Sequence , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme System/genetics , DNA Primers , Humans , Isoenzymes/genetics , Kinetics , Mutagenesis, Site-Directed
5.
Pharmacol Ther ; 113(3): 537-45, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17270273

ABSTRACT

The true importance of cytochrome P450 enzymes, not just in drug metabolism but also in pharmacology, is only beginning to be appreciated. Though originally discovered through their role in the biotransformation of xenobiotics, the P450 enzyme super family is ubiquitous in nature and necessarily evolved around endogenous pathways. The extent of tissue- and cell-specific expression of individual P450 isoforms has led many investigators to hypothesize localized roles in endogenous biochemical pathways for isoforms traditionally thought of as drug-metabolizing. In some cases, direct evidence from humanized transgenic animal models can confirm the degree to which such enzymes modulate endogenous pathways. However, overlapping P450 substrate specificities may mask genetic or biochemical deficiencies, such that many of these reactions appear nonessential. Nonetheless, the drug-induced alteration of local biochemical concentrations in extrahepatic tissues due to metabolism by and inhibition of P450 isoforms has tremendous potential for introducing unexpected pharmacological effects. Nowhere is this truer than in the CNS. On the other hand, if we can harness the power of in silico modeling to create highly specific inhibitors of identified brain isoforms, a novel avenue for drug design using P450 as drug targets may be at hand. This article highlights some notable examples in which the catalytic state of specific P450 isoforms involved in endogenous biochemical reaction pathways are influenced by pharmacological agents. The implications of inhibition of P450-catalzyed oxidation steps that are known or speculated to influence arachadonic acid, cholesterol, and catecholamine neurotransmitters pathways in human brain will be considered.


Subject(s)
Brain/drug effects , Brain/enzymology , Cytochrome P-450 Enzyme System/metabolism , Xenobiotics/metabolism , Animals , Arachidonic Acid/metabolism , Catecholamines/physiology , Cholesterol/metabolism , Computer Simulation , Drug Design , Humans , Isoenzymes/metabolism , Models, Biological
6.
Drug Metab Dispos ; 34(7): 1167-74, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16595712

ABSTRACT

Metabolism of the prototype human CYP2D6 substrates debrisoquine and bufuralol proceeds at a much slower rate in mice; therefore, the mouse has been proposed as an animal model for the human CYP2D6 genetic deficiency. To interpret the molecular mechanism of this deficiency, a cDNA belonging to the CYP2D gene subfamily (Cyp2d22) has been cloned and sequenced from a mouse mammary tumor-derived cell line. In the current study, Cyp2d22 enzyme was overexpressed and purified from insect cells using a baculovirus-mediated system. The activity of this purified enzyme was directly compared with purified human CYP2D6 toward codeine, dextromethorphan, and methadone as substrates. Purified Cyp2d22 was found to catalyze the O-demethylation of dextromethorphan with significantly higher K(m) values (250 microM) than that (4.2 microM) exhibited by purified human CYP2D6. The K(m) for dextromethorphan N-demethylation by Cyp2d22 was found to be 418 microM, much lower than that observed with human CYP2D6 and near the K(m) for dextromethorphan N-demethylation catalyzed by CYP3A4. CYP2D6 catalyzed codeine O-demethylation, whereas Cyp2d22 and CYP3A4 mediated codeine N-demethylation. Furthermore, methadone, a known CYP3A4 substrate and CYP2D6 inhibitor, was N-demethylated by Cyp2d22 with a K(m) of 517 microM and V(max) of 4.9 pmol/pmol/min. Quinidine and ketoconazole, potent inhibitors to CYP2D6 and CYP3A4, respectively, did not show strong inhibition toward Cyp2d22-mediated dextromethorphan O- or N-demethylation. These results suggest that mouse Cyp2d22 has its own substrate specificity beyond CYP2D6-like-deficient activity.


Subject(s)
Codeine/metabolism , Cytochrome P-450 Enzyme System/metabolism , Dextromethorphan/metabolism , Fluoxetine/metabolism , Methadone/metabolism , Substrate Specificity , Amino Acid Sequence , Animals , Baculoviridae , Cell Line , Cloning, Molecular , Cytochrome P-450 CYP2D6/chemistry , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/isolation & purification , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6 Inhibitors , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/isolation & purification , Cytochrome P450 Family 2 , Dealkylation , Enzyme Inhibitors/pharmacology , Insecta , Ketoconazole/pharmacology , Kinetics , Mice , Molecular Sequence Data , Molecular Weight , Quinidine/pharmacology , Sequence Homology, Amino Acid
7.
Drug Metab Dispos ; 34(5): 880-6, 2006 May.
Article in English | MEDLINE | ID: mdl-16467132

ABSTRACT

Cytochromes P450 (P450s) 3A, 2C, and 1A2 constitute the major "pieces" of the human liver P450 "pie" and account, on average, for 40, 25, and 18%, respectively, of total immunoquantified P450s (J Pharmacol Exp Ther 270:414-423, 1994). The P450 profile in the human small intestine has not been fully characterized. Therefore, microsomes prepared from mucosal scrapings from the duodenal/jejunal portion of 31 human donor small intestines were analyzed by Western blot using selective P450 antibodies. P450s 3A4, 2C9, 2C19, and 2J2 were detected in all individuals and ranged from 8.8 to 150, 2.9 to 27, <0.6 to 3.9, and <0.2 to 3.1 pmol/mg, respectively. CYP2D6 was detected in 29 individuals and ranged from <0.2 to 1.4 pmol/mg. CYP3A5 was detected readily in 11 individuals, with a range (average) of 4.9 to 25 (16) pmol/mg that represented from 3 to 50% of total CYP3A (CYP3A4 + CYP3A5) content. CYP1A1 was detected readily in three individuals, with a range (average) of 3.6 to 7.7 (5.6) pmol/mg. P450s 1A2, 2A6, 2B6, 2C8, and 2E1 were not or only faintly detected. As anticipated, average CYP3A content (50 pmol/mg) was the highest. Excluding CYP1A1, the remaining enzymes had the following rank order: 2C9 > 2C19 > 2J2 > 2D6 (8.4, 1.1, 0.9, and 0.5 pmol/mg, respectively). Analysis of a pooled preparation of the 31 donor specimens substantiated these results. In summary, as in the liver, large interindividual variation exists in the expression levels of individual P450s. On average, CYP3A and CYP2C9 represents the major pieces of the intestinal P450 pie, accounting for 80 and 15%, respectively, of total immunoquantified P450s.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Intestines/enzymology , Adolescent , Adult , Blotting, Western , Colon/enzymology , Duodenum/enzymology , Female , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/enzymology , Intestine, Small/enzymology , Isoenzymes/metabolism , Male , Microsomes/enzymology , Middle Aged , Recombinant Proteins/metabolism
8.
Biochem Pharmacol ; 70(7): 1096-103, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16112652

ABSTRACT

Delta9-tetrahydrocannabinol (delta9-THC), the primary psychoactive constituent of marijuana, is subject to first pass hepatic metabolism primarily by hydroxylation to yield active and inactive oxygenated products. The primary metabolite is formed via oxidation of the allylic methyl group to yield 11-hydroxy-delta9-THC, which is oxidized further to 11-nor-9-carboxy-delta9-THC. The hydroxylation is thought to be mediated by CYP2C9. The present study was designed to address the kinetics and pharmacogenetics of CYP2C-mediated metabolism of (delta9)-THC by studying its metabolism in human liver microsomes and expressed enzymes. Expressed CYP2C9.1 exhibited high affinity for the hydroxylation of delta9-THC (apparent Km, 2 microM), similar to that observed in human liver microsomes (apparent Km 0.8 microM). In contrast, the calculated intrinsic clearance (apparent Vm/Km) for CYP2C9.2 and CYP2C9.3 was approximately 30% that of the wild type, CYP2C9.1. Given the high affinity of CYP2C9 for the hydroxylation of delta9-THC, we evaluated the potential for an interaction between delta9-THC, 11-hydroxy-delta9-THC, or 11-nor-9-carboxy-delta9-THC and the CYP2C9 substrate, phenytoin. Surprisingly, delta9-THC increased the rate of phenytoin hydroxylation in human liver microsomes and expressed CYP2C9 enzyme. Similar increases in rate were observed with co-incubation of 11-hydroxy-delta9-THC and 11-nor-9-carboxy-delta9-THC with phenytoin. These in vitro data suggest the potential for an interaction from the concomitant administration of delta9-THC and phenytoin that could result in decreased phenytoin concentrations in vivo.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Dronabinol/metabolism , Pharmacogenetics , Phenytoin/pharmacology , Catalysis , Cytochrome P-450 Enzyme Inhibitors , Dronabinol/pharmacokinetics , Dronabinol/pharmacology , Drug Interactions , Humans , Hydroxylation , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Substrate Specificity
9.
Biochem Pharmacol ; 67(10): 1831-41, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15130760

ABSTRACT

Studies have shown that CYP2C9.1 mediated metabolism of flurbiprofen or naproxen is activated by co-incubation with dapsone. However, dapsone activation has not been examined in the known variant forms of CYP2C9. Six concentrations of flurbiprofen (2-300microM) or naproxen (10-1800 microM) were co-incubated with six concentrations of dapsone (0-100 microM) and with reconstituted, purified CYP2C9.1, CYP2C9.2 (R144C), CYP2C9.3 (I359L), or CYP2C9.5 (D360E), in order to assess degrees of activation. Dapsone increased the efficiency (V(m)/K(m)) of flurbiprofen 4'-hydroxylation by CYP2C9.1, CYP2C9.2, CYP2C9.3, and CYP2C9.5 by 8-, 31-, 47-, and 22-fold, respectively. In similar experiments using the substrate naproxen, dapsone increased the efficiency of naproxen demethylation 7-, 15-, 13-, and 22-fold, in CYP2C9.1, CYP2C9.2, CYP2C9.3, and CYP2C9.5, respectively. Also, dapsone normalized naproxen's kinetic profile from biphasic (CYP2C9.1 and CYP2C9.2) or linear (CYP2C9.3 and CYP2C9.5) to hyperbolic for all variant forms. Thus, amino acid substitutions of CYP2C9 variants affect the degree of dapsone activation in a genotype-dependent fashion. Furthermore, the degree of effect noted across variants appeared to be dependent on the substrate studied.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Dapsone/pharmacology , Flurbiprofen/metabolism , Naproxen/metabolism , Alleles , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2C9 , Enzyme Activation/drug effects , Humans , Hydroxylation , Kinetics , Substrate Specificity
10.
J Pharmacol Exp Ther ; 304(2): 539-46, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12538805

ABSTRACT

Tryptamine is a trace amine in mammalian central nervous system that interacts with the trace amine TA(2) receptor and is now thought to function as a neurotransmitter or neuromodulator. It had been reported that deamination of tryptamine to tryptophol was mediated by CYP2D6, a cytochrome P450 that is expressed in human brain, suggesting that tryptamine may be an endogenous substrate for this polymorphic enzyme. We were unable to confirm this report and have reinvestigated tryptamine metabolism in human liver microsomes (HLM) and in microsomes expressing recombinant human cytochrome P450 and monoamine oxidase (MAO) isozymes. Tryptamine was oxidized to indole-3-acetaldehyde by HLM and recombinant human MAO-A in the absence of NADPH, and indole-3-acetaldehyde was further reduced to tryptophol by aldehyde reductase in HLM in the presence of NADPH. Steady-state kinetic parameters were estimated for each reaction step by HLM and MAO-A. The CYP2D6 substrates bufuralol and debrisoquine showed strong inhibition of both tryptophol production from tryptamine in HLM and the formation of indole-3-acetaldehyde from tryptamine catalyzed by recombinant MAO-A. Anti-CYP2D6 monoclonal antibody did not inhibit these reactions. Pargyline, a nonselective MAO inhibitor, did not show cross inhibition to debrisoquine 4-hydroxylation and dextromethorphan O-demethylation by HLM and recombinant CYP2D6 enzyme. This is the first unequivocal report of the selective conversion of tryptamine to tryptophol by MAO-A. CYP2D6 does not contribute to this reaction.


Subject(s)
Cytochrome P-450 Enzyme System/physiology , Monoamine Oxidase/physiology , Tryptamines/metabolism , Cytochrome P-450 CYP2D6/metabolism , Deamination/drug effects , Humans , Isoenzymes/physiology , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Monoamine Oxidase Inhibitors/pharmacology
11.
J Pharmacol Exp Ther ; 303(3): 1291-300, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12438554

ABSTRACT

Polymorphism at the cytochrome P450 2D6 (CYP2D6) locus is one of the most widely known causes of pharmacogenetic variability in humans. Our goal is to investigate the intrinsic enzymatic differences that exist among active CYP2D6 isoforms to test the hypothesis that these enzymatic differences are substrate-dependent. Active CYP2D6.1, 2, 10, and 17 holo-enzymes were expressed in vitro and purified to a high degree of homogeneity as confirmed with SDS-polyacrylamide gel electrophoresis, CO-difference spectroscopy, and mass spectral analysis. Purified enzyme was reconstituted with lipid and cytochrome P450 reductase in a 2:1 ratio before kinetic analysis. The reaction rate for dextromethorphan (DXM) O-demethylation, DXM N-demethylation, codeine O-demethylation, and fluoxetine N-demethylation catalyzed by each of the variants was determined. The CYP2D6.10 enzyme was the most impaired, exhibiting an estimated enzyme efficiency (as V(max)/K(m)) 50-fold lower for DXM O-demethylation and 100-fold lower for fluoxetine N-demethylation when compared with CYP2D6.1, whereas no measurable catalytic activity was observed for this variant toward codeine. The atypical DXM N-demethylation pathway catalyzed by this variant decreased only 2-fold in comparison. In the case of CYPD6.17, estimated clearances for each metabolite were decreased 6 to 33%. Likewise, the intrinsic clearance of CYP2D6.2 enzyme was consistently decreased for each reaction examined, indicating that the ultra-rapid metabolizer phenotype sometimes associated with this genotype is not a function of the underlying amino acid substitutions. Overall enzyme efficiencies for the metabolism of each substrate therefore decreased in the order of 2D6.1 > 2D6.2 > 2D6.17 > 2D6.10.


Subject(s)
Alleles , Cytochrome P-450 CYP2D6/biosynthesis , Cytochrome P-450 CYP2D6/isolation & purification , Animals , Baculoviridae/genetics , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/physiology , DNA, Complementary/biosynthesis , Enzyme Activation/genetics , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/physiology , Moths/genetics , Substrate Specificity/genetics
12.
Biochem Pharmacol ; 63(12): 2111-9, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12110370

ABSTRACT

"Ecstasy" [(+/-)-3,4-methylenedioxymethamphetamine or MDMA] is a CNS stimulant, whose use is increasing despite evidence of long-term neurotoxicity. In vitro, the majority of MDMA is demethylenated to (+/-)-3,4-dihydroxymethamphetamine (DHMA) by the polymorphic cytochrome P450 2D6 (CYP2D6). We investigated the demethylenation of MDMA and dextromethorphan (DEX), as a comparison drug, in reconstituted microsomes expressing the variant CYP2D6 alleles (*)2, (*)10, and (*)17, all of which have been linked to decreased enzyme activity. With MDMA, intrinsic clearances (V(max)/K(m)) in CYP2D6.2, CYP2D6.17, and CYP2D6.10 were reduced 15-, 13-, and 135-fold, respectively, compared with wild-type CYP2D6.1. With DEX, intrinsic clearances were reduced by 37-, 51-, and 164-fold, respectively. It was evident that CYP2D6.17 displayed substrate-specific changes in drug affinity (K(m)). Compounds potentially used with MDMA [fluoxetine, paroxetine, (-)-cocaine] demonstrated significant inhibition of MDMA metabolism in both human liver and CYP2D6.1-expressing microsomes. These data demonstrate that individuals possessing the CYP2D6(*)2, (*)17, and, particularly, (*)10 alleles may show significantly reduced MDMA metabolism. These individuals, and those taking CYP2D6 inhibitors, may demonstrate altered acute and/or long-term MDMA-related toxicity.


Subject(s)
Cytochrome P-450 CYP2D6/metabolism , Hallucinogens/metabolism , Microsomes, Liver/metabolism , N-Methyl-3,4-methylenedioxyamphetamine/metabolism , Alleles , Cocaine/pharmacology , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6 Inhibitors , Dextromethorphan/pharmacology , Drug Interactions , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Humans , In Vitro Techniques , Oxidation-Reduction , Recombinant Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology
13.
Drug Metab Dispos ; 30(4): 385-90, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11901091

ABSTRACT

CYP2C9 wild-type protein has been shown to exhibit atypical kinetic profiles of metabolism that may affect in vitro-in vivo predictions made during the drug development process. Previous work suggests a substrate-dependent effect of polymorphic variants of CYP2C9 on the rate of metabolism; however, it is hypothesized that these active site amino acid changes will affect the kinetic profile of a drug's metabolism as well. To this end, the kinetic profiles of three model CYP2C9 substrates (flurbiprofen, naproxen, and piroxicam) were studied using purified CYP2C9*1 (wild-type) and variants involving active site amino acid changes, including the naturally occurring variants CYP2C9*3 (Leu359) and CYP2C9*5 (Glu360) and the man-made mutant CYP2C9 F114L. CYP2C9*1 (wild-type) metabolized each of the three compounds with a distinctive profile reflective of typical hyperbolic (flurbiprofen), biphasic (naproxen), and substrate inhibition (piroxicam) kinetics. CYP2C9*3 metabolism was again hyperbolic for flurbiprofen, of a linear form for naproxen (no saturation noted), and exhibited substrate inhibition with piroxicam. CYP2C9*5-mediated metabolism was hyperbolic for flurbiprofen and piroxicam but linear with respect to naproxen turnover. The F114L mutant exhibited a hyperbolic kinetic profile for flurbiprofen metabolism, a linear profile for naproxen metabolism, and a substrate inhibition kinetic profile for piroxicam metabolism. In all cases except F114L-mediated piroxicam metabolism, turnover decreased and the K(m) generally increased for each allelic variant compared with wild-type enzyme. It seems that the kinetic profile of CYP2C9-mediated metabolism is dependent on both substrate and the CYP2C9 allelic variant, thus having potential ramifications on drug disposition predictions made during the development process.


Subject(s)
Amino Acid Substitution , Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Polymorphism, Genetic , Steroid 16-alpha-Hydroxylase , Steroid Hydroxylases/chemistry , Steroid Hydroxylases/metabolism , Alleles , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Binding Sites/genetics , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme System/genetics , Flurbiprofen/chemistry , Flurbiprofen/metabolism , Humans , Kinetics , Mutation , Naproxen/chemistry , Naproxen/metabolism , Piroxicam/chemistry , Piroxicam/metabolism , Steroid Hydroxylases/genetics , Structure-Activity Relationship , Substrate Specificity
14.
Drug Metab Dispos ; 30(3): 235-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11854139

ABSTRACT

Highly potent and selective CYP2C19 inhibitors are not currently available. In the present study, N-3-benzyl derivatives of nirvanol and phenobarbital were synthesized, their respective (+)- and (-)-enantiomers resolved chromatographically, and inhibitor potencies determined for these compounds toward CYP2C19 and other human liver cytochromes P450 (P450s). (-)-N-3-Benzyl-phenobarbital and (+)-N-3-benzyl-nirvanol were found to be highly potent, competitive inhibitors of recombinant CYP2C19, exhibiting K(i) values of 79 and 250 nM, respectively, whereas their antipodes were 20- to 60-fold less potent. In human liver preparations, (-)-N-3-benzyl-phenobarbital and (+)-N-3-benzyl-nirvanol inhibited (S)-mephenytoin 4'-hydroxylase activity, a marker for native microsomal CYP2C19, with K(i) values ranging from 71 to 94 nM and 210 to 280 nM, respectively. At single substrate concentrations of 0.3 microM [(-)-N-3-benzyl-phenobarbital] and 1 microM [(+)-N-3-benzyl-nirvanol] that were used to examine inhibition of a panel of cDNA-expressed P450 isoforms, neither CYP1A2, 2A6, 2C8, 2C9, 2D6, 2E1, nor 3A4 activities were decreased by greater than 16%. In contrast, CYP2C19 activity was inhibited approximately 80% under these conditions. Therefore, (+)-N-3-benzyl-nirvanol and (-)-N-3-benzyl-phenobarbital represent new, highly potent and selective inhibitors of CYP2C19 that are likely to prove generally useful for screening purposes during early phases of drug metabolism studies with new chemical entities.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Mephenytoin/pharmacology , Mixed Function Oxygenases/antagonists & inhibitors , Phenobarbital/pharmacology , Animals , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP2C19 , Cytochrome P-450 Enzyme System/chemistry , DNA, Complementary/metabolism , Enzyme Inhibitors/chemistry , Female , Fluorometry , Humans , Hydroxylation , In Vitro Techniques , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mephenytoin/analogs & derivatives , Mephenytoin/chemistry , Microsomes, Liver/enzymology , Mixed Function Oxygenases/chemistry , Phenobarbital/analogs & derivatives , Phenobarbital/chemistry , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...