Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 368: 114496, 2023 10.
Article in English | MEDLINE | ID: mdl-37499972

ABSTRACT

Thoracic spinal cord injury affects long propriospinal neurons that interconnect the cervical and lumbar enlargements. These neurons are crucial for coordinating forelimb and hindlimb locomotor movements in a speed-dependent manner. However, recovery from spinal cord injury is usually studied over a very limited range of speeds that may not fully expose circuitry dysfunction. To overcome this limitation, we investigated overground locomotion in rats trained to move over an extended distance with a wide range of speeds both pre-injury and after recovery from thoracic hemisection or contusion injuries. In this experimental context, intact rats expressed a speed-dependent continuum of alternating (walk and trot) and non-alternating (canter, gallop, half-bound gallop, and bound) gaits. After a lateral hemisection injury, rats recovered the ability to locomote over a wide range of speeds but lost the ability to use the highest-speed gaits (half-bound gallop and bound) and predominantly used the limb contralateral to the injury as lead during canter and gallop. A moderate contusion injury caused a greater reduction in maximal speed, loss of all non-alternating gaits, and emergence of novel alternating gaits. These changes resulted from weak fore-hind coupling together with appropriate control of left-right alternation. After hemisection, animals expressed a subset of intact gaits with appropriate interlimb coordination even on the side of the injury, where the long propriospinal connections were severed. These observations highlight how investigating locomotion over the full range of speeds can reveal otherwise hidden aspects of spinal locomotor control and post-injury recovery.


Subject(s)
Contusions , Spinal Cord Injuries , Rats , Animals , Locomotion , Spinal Cord , Gait/physiology , Hindlimb
2.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36993490

ABSTRACT

Thoracic spinal cord injury affects long propriospinal neurons that interconnect the cervical and lumbar enlargements. These neurons are crucial for coordinating forelimb and hindlimb locomotor movements in a speed-dependent manner. However, recovery from spinal cord injury is usually studied over a very limited range of speeds that may not fully expose circuitry dysfunction. To overcome this limitation, we investigated overground locomotion in rats trained to move over an extended distance with a wide range of speeds both pre-injury and after recovery from thoracic hemisection or contusion injuries. In this experimental context, intact rats expressed a speed-dependent continuum of alternating (walk and trot) and non-alternating (canter, gallop, half-bound gallop, and bound) gaits. After a lateral hemisection injury, rats recovered the ability to locomote over a wide range of speeds but lost the ability to use the highest-speed gaits (half-bound gallop and bound) and predominantly used the limb contralateral to the injury as lead during canter and gallop. A moderate contusion injury caused a greater reduction in maximal speed, loss of all non-alternating gaits, and emergence of novel alternating gaits. These changes resulted from weak fore-hind coupling together with appropriate control of left-right alternation. After hemisection, animals expressed a subset of intact gaits with appropriate interlimb coordination even on the side of the injury, where the long propriospinal connections were severed. These observations highlight how investigating locomotion over the full range of speeds can reveal otherwise hidden aspects of spinal locomotor control and post-injury recovery.

3.
Elife ; 92020 09 09.
Article in English | MEDLINE | ID: mdl-32902379

ABSTRACT

Within the cervical and lumbar spinal enlargements, central pattern generator (CPG) circuitry produces the rhythmic output necessary for limb coordination during locomotion. Long propriospinal neurons that inter-connect these CPGs are thought to secure hindlimb-forelimb coordination, ensuring that diagonal limb pairs move synchronously while the ipsilateral limb pairs move out-of-phase during stepping. Here, we show that silencing long ascending propriospinal neurons (LAPNs) that inter-connect the lumbar and cervical CPGs disrupts left-right limb coupling of each limb pair in the adult rat during overground locomotion on a high-friction surface. These perturbations occurred independent of the locomotor rhythm, intralimb coordination, and speed-dependent (or any other) principal features of locomotion. Strikingly, the functional consequences of silencing LAPNs are highly context-dependent; the phenotype was not expressed during swimming, treadmill stepping, exploratory locomotion, or walking on an uncoated, slick surface. These data reveal surprising flexibility and context-dependence in the control of interlimb coordination during locomotion.


Subject(s)
Central Pattern Generators , Extremities , Interneurons , Proprioception/physiology , Animals , Central Pattern Generators/cytology , Central Pattern Generators/physiology , Commissural Interneurons/cytology , Commissural Interneurons/physiology , Extremities/innervation , Extremities/physiology , Female , Interneurons/cytology , Interneurons/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology , Spinal Cord/physiology
4.
Exp Neurol ; 318: 267-276, 2019 08.
Article in English | MEDLINE | ID: mdl-30880143

ABSTRACT

In the course of investigating how common clinical treatments and adaptive technologies affect recovery after spinal cord injury (SCI), we discovered that a clinically-modeled hindlimb stretching protocol dramatically, but transiently, reduces locomotor function. Nociceptive sensory input is capable of altering motor output at the spinal level, and nociceptive neurons are sensitized after SCI. Here we tested the hypotheses that stretch-induced locomotor deficits are dependent on nociceptive afferents by depleting TRPV1+ sensory afferents using capsaicin injections in neonatal rats. Following maturation, animals received 25g-cm contusive SCI at T10. After plateau of locomotor recovery at 6 weeks, daily stretching was performed for 3 weeks, followed by 2 weeks without stretch, and again for two additional weeks. Animals were sacrificed 2 h after the last stretching session for histological assessments. Consistent with previous findings, stretch-induced drops in locomotor function were observed in nociceptor-intact animals but were nearly absent in nociceptor-depleted animals. These functional changes were accompanied by corresponding increases in the number of c-Fos+ nuclei throughout the lumbar enlargement. As expected, nociceptor-depleted animals had very little CGRP+ axonal innervation of the dorsal horn. Nociceptor-intact stretched animals had significantly higher levels of CGRP+ as compared to non-stretched SCI rats, suggesting that stretching promoted intraspinal CGRP+ sprouting. These results indicate that stretch-induced locomotor dysfunction in animals with incomplete SCI involves C-fibers, adding a negative post-SCI role to their adaptive roles (e.g., bladder control), and suggesting that the clinical use of muscle stretching to combat contractures and spasticity may be unintentionally detrimental to locomotor function.


Subject(s)
Locomotion/physiology , Muscle Stretching Exercises/adverse effects , Nociceptors , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Animals , Hindlimb , Neurons, Afferent/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...