Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 9(6): e0024824, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38837382

ABSTRACT

Superficial infections of the skin, hair, and nails by fungal dermatophytes are the most prevalent of human mycoses, and many infections are refractory to treatment. As current treatment options are limited, recent research has explored drug synergy with azoles for dermatophytoses. Bisphosphonates, which are approved to treat osteoporosis, can synergistically enhance the activity of azoles in diverse yeast pathogens but their activity has not been explored in dermatophytes or other molds. Market bisphosphonates risedronate, alendronate, and zoledronate (ZOL) were evaluated for antifungal efficacy and synergy with three azole antifungals: fluconazole (FLC), itraconazole (ITR), and ketoconazole (KET). ZOL was the most active bisphosphonate tested, displaying moderate activity against nine dermatophyte species (MIC range 64-256 µg/mL), and was synergistic with KET in eight of these species. ZOL was also able to synergistically improve the anti-biofilm activity of KET and combining KET and ZOL prevented the development of antifungal resistance. Rescue assays in Trichophyton rubrum revealed that the inhibitory effects of ZOL alone and in combination with KET were due to the inhibition of squalene synthesis. Fluorescence microscopy using membrane- and ROS-sensitive probes demonstrated that ZOL and KET:ZOL compromised membrane structure and induced oxidative stress. Antifungal activity and synergy between bisphosphonates and azoles were also observed in other clinically relevant molds, including species of Aspergillus and Mucor. These findings indicate that repurposing bisphosphonates as antifungals is a promising strategy for revitalising certain azoles as topical antifungals, and that this combination could be fast-tracked for investigation in clinical trials. IMPORTANCE: Fungal infections of the skin, hair, and nails, generally grouped together as "tineas" are the most prevalent infectious diseases globally. These infections, caused by fungal species known as dermatophytes, are generally superficial, but can in some cases become aggressive. They are also notoriously difficult to resolve, with few effective treatments and rising levels of drug resistance. Here, we report a potential new treatment that combines azole antifungals with bisphosphonates. Bisphosphonates are approved for the treatment of low bone density diseases, and in fungi they inhibit the biosynthesis of the cell membrane, which is also the target of azoles. Combinations were synergistic across the dermatophyte species and prevented the development of resistance. We extended the study to molds that cause invasive disease, finding synergy in some problematic species. We suggest bisphosphonates could be repurposed as synergents for tinea treatment, and that this combination could be fast-tracked for use in clinical therapy.


Subject(s)
Antifungal Agents , Arthrodermataceae , Diphosphonates , Drug Synergism , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Humans , Diphosphonates/pharmacology , Azoles/pharmacology , Biofilms/drug effects , Drug Resistance, Fungal , Fungi/drug effects
2.
J Fungi (Basel) ; 8(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36422019

ABSTRACT

Onychomycosis is a fungal disease of the nail that is found worldwide and is difficult to diagnose accurately. This study used metagenomics to investigate the microbiology of 18 clinically diagnosed mycotic nails and two normal nails for fungi and bacteria using the ITS2 and 16S loci. Four mycotic nails were from Bass Coast, six from Melbourne Metropolitan and eight from Shepparton, Victoria, Australia. The mycotic nails were photographed and metagenomically analysed. The ITS2 sequences for T. rubrum and T. interdigitale/mentagrophytes averaged over 90% of hits in 14/18 nails. The high abundance of sequences of a single dermatophyte, compared to all other fungi in a single nail, made it the most likely infecting agents (MLIA). Trichophyton rubrum and T. interdigitale/mentagrophytes were found in Bass Coast and Shepparton while only T. interdigitale/mentagrophytes was found in Melbourne. Two nails with T. interdigitale/mentagrophytes mixed with high abundance non-dermatophyte moulds (NDMs) (Aspergillus versicolor, Acremonium sclerotigenum) were also observed. The two control nails contained chiefly Fusarium oxysporum and Malassezia slooffiae. For bacteria, Staphylococcus epidermidis was in every nail and was the most abundant, including the control nails, with an overall mean rate of 66.01%. Rothia koreensis, Corynebacterium tuberculostearicum, and Brevibacterium sediminis also featured.

3.
Antimicrob Agents Chemother ; 65(8): e0005621, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33972254

ABSTRACT

During the past decade, a prolonged and serious outbreak of dermatophytosis due to a terbinafine-resistant novel species in the Trichophyton mentagrophytes-T. interdigitale complex has been ongoing in India, and it has spread to several European countries. The objective of this study was to investigate the molecular background of the squalene epoxidase (SQLE) gene in order to understand the risk of emergence and spread of multiresistance in dermatophytes. Antifungal susceptibility to fluconazole, griseofulvin, itraconazole, ketoconazole, miconazole, naftifine, sertaconazole, and terbinafine was tested in 135 isolates from India, China, Australia, Germany, and The Netherlands. Based on the latest taxonomic insights, strains were identified as three species: T. mentagrophytes sensu stricto (n = 35), T. indotineae (n = 64, representing the Indian clone), and T. interdigitale sensu stricto (n = 36). High MICs of terbinafine (>16 mg/liter) were found in 34 (53%) T. indotineae isolates. These isolates showed an amino acid substitution in the 397th position of the SQLE gene. Elevated MICs of terbinafine (0.5 mg/liter) were noted in 2 (3%) T. indotineae isolates; these isolates lead to Phe415Val and Leu393Ser of the SQLE gene. The stability of the effect of the mutations was proven by serial transfer on drug-free medium. Lys276Asn and Leu419Phe substitutions were found in susceptible T. mentagrophytes strains. The Phe377Leu/Ala448Thr double mutant showed higher MIC values for triazoles. High MICs of terbinafine are as yet limited to T. indotineae and are unlikely to be distributed throughout the T. mentagrophytes species complex by genetic exchange.


Subject(s)
Arthrodermataceae , Trichophyton , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Arthrodermataceae/genetics , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests , Mutation , Squalene Monooxygenase/genetics , Trichophyton/genetics
4.
Pathogens ; 10(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670403

ABSTRACT

Superficial dermatophyte infections, commonly known as tineas, are the most prevalent fungal ailment and are increasing in incidence, leading to an interest in alternative treatments. Many floral honeys possess antimicrobial activity due to high sugar, low pH, and the production of hydrogen peroxide (H2O2) from the activity of the bee-derived enzyme glucose oxidase. Australian jarrah (Eucalyptus marginata) honey produces particularly high levels of H2O2 and has been found to be potently antifungal. This study characterized the activity of jarrah honey on fungal dermatophyte species. Jarrah honey inhibited dermatophytes with minimum inhibitory concentrations (MICs) of 1.5-3.5% (w/v), which increased to ≥25% (w/v) when catalase was added. Microscopic analysis found jarrah honey inhibited the germination of Trichophyton rubrum conidia and scanning electron microscopy of mature T. rubrum hyphae after honey treatment revealed bulging and collapsed regions. When treated hyphae were stained using REDOX fluorophores these did not detect any internal oxidative stress, suggesting jarrah honey acts largely on the hyphal surface. Although H2O2 appears critical for the antifungal activity of jarrah honey and its action on fungal cells, these effects persisted when H2O2 was eliminated and could not be replicated using synthetic honey spiked with H2O2, indicating jarrah honey contains agents that augment antifungal activity.

5.
Med Mycol ; 59(4): 355-365, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-32640011

ABSTRACT

Arthroderma is the most diverse genus among dermatophytes encompassing species occurring in soil, caves, animal burrows, clinical material and other environments. In this study, we collected ex-type, reference and authentic strains of all currently accepted Arthroderma species and generated sequences of three highly variable loci (ITS rDNA, ß-tubulin, and translation elongation factor 1-α). The number of accepted species was expanded to 27. One novel species, A. melbournense (ex-type strain CCF 6162T = CBS 145858T), is described. This species was isolated from toenail dust collected by a podiatrist in Melbourne, during an epidemiological study of four geographical regions of Eastern Australia. Trichophyton terrestre, Chrysosporium magnisporum, and Chrysosporium oceanitis are transferred to Arthroderma. Typification is provided for T. terrestre that is not conspecific with any of the supposed biological species from the former T. terrestre complex, that is, A. insingulare, A. lenticulare and A. quadrifidum. A multi-gene phylogeny and reference sequences provided in this study should serve as a basis for future phylogenetic studies and facilitate species identification in practice. LAY ABSTRACT: The genus Arthroderma encompasses geophilic dermatophyte species that infrequently cause human and animal superficial infections. Reference sequences from three genetic loci were generated for all currently accepted Arthroderma species and phylogeny was constructed. Several taxonomic novelties are introduced. The newly provided data will facilitate species identification and future taxonomic studies.


Subject(s)
Arthrodermataceae/classification , Arthrodermataceae/genetics , DNA, Fungal/genetics , Genes, Fungal/genetics , Phylogeny , Australia , DNA, Ribosomal Spacer/genetics , Humans , Microsporum/classification , Microsporum/genetics , Peptide Elongation Factor 1/genetics , Trichophyton/classification , Trichophyton/genetics , Tubulin/genetics
6.
Mycopathologia ; 185(1): 175-185, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31332646

ABSTRACT

Toenail onychomycosis caused by dermatophytes is a significant medical and financial worldwide burden. Relatively scant research has been undertaken as to the predominant species and strains causing this condition in Australia, which is a unique isolated continent with diverse geographical, climatic and population regions. Four regions were selected in Eastern Australia: Far North Queensland, Rural Victoria, Melbourne Metropolitan and Tasmania. From each of these areas, communal nail dust bags from podiatric physicians' work were collected and analysed. A total of 32 dust bags were collected: 10 from Far North Queensland, 8 from Melbourne Metropolitan, 8 from Rural Victoria and 6 from Tasmania. Dermatophyte test medium was used to isolate dermatophytes from the dust, and the colonies were subcultured to Potato Dextrose Agar. Of the bags collected, in total 69% were positive for dermatophytes: 40% from Far North Queensland, 75% from Melbourne Metropolitan, 88% from Rural Victoria and 83% from Tasmania. The internal transcribed spacer (ITS) region of ribosomal DNA was used to identify and compare isolates. A total of 148 dermatophyte strains were identified. The predominant species isolated was Trichophyton interdigitale (125 isolates), which was found in all four regions. This species was further subdivided into four ITS genotypes: the first two were present in all regions, but the third was found only in the Melbourne Metropolitan area and the fourth only in Tasmania. Only one strain of Trichophyton rubrum was found and only in Rural Victoria. Eighteen isolates of Arthroderma quadrifidum were cultured from Rural Victoria and Tasmania and were further classified into three ITS genotypes. Some isolates rarely reported in clinical material were identified as Paraphyton cookei, Arthroderma tuberculatum and Arthroderma crocatum. A potentially new species of Arthroderma was also found in Melbourne Metropolitan. These findings reveal a unique dermatophyte fingerprint in toenails for Eastern Australia.


Subject(s)
Nails/microbiology , Onychomycosis/microbiology , Trichophyton/genetics , Trichophyton/pathogenicity , Australia , DNA, Intergenic/genetics , Genotype , Humans
7.
J Am Podiatr Med Assoc ; 105(2): 111-20, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25815649

ABSTRACT

BACKGROUND: Podiatric physicians routinely use electric drills for the treatment of nail and skin conditions. The grinding process produces human nail and skin dust that is generally vacuumed into bags in the grinding unit. Many of the nails are thought to be mycotic, particularly because they are obtained from patients with symptoms of dermatophyte infections. Currently, there is limited information available on the detection of fungi from nail dust samples. Herein, we attempt to address this situation and outline some of the difficulties that pathology laboratories face in isolating and identifying dermatophytes from nail samples. METHODS: Fifty nail dust bags from podiatric medical clinics across all of the states and territories of Australia were collected and analyzed. Samples from the bags were inoculated onto primary isolation media. Fungal colonies that grew were then inoculated onto potato dextrose agar for identification using standard morphological (macroscopic and microscopic) features. RESULTS: One hundred fifty-one colonies of dermatophytes were identified from 43 of the 50 samples. In addition 471 nondermatophyte molds were isolated, along with some yeasts and bacteria. CONCLUSIONS: The most common dermatophytes isolated were from the Trichophyton mentagrophytes/interdigitale complexes. Trichophyton rubrum, Trichophyton tonsurans, Trichophyton soudanense, and Epidermophyton floccosum were also isolated. An unidentified group of dermatophytes was also present. The three most common genera of nondermatophyte molds were Aspergillus, Penicillium, and Scopulariopsis, all of which have been implicated in onychomycosis and more general disease. The presence of viable fungal pathogens in the dust could potentially pose a health problem to podiatric physicians.


Subject(s)
Arthrodermataceae/isolation & purification , Dust , Nails/microbiology , Onychomycosis/microbiology , Skin/microbiology , Arthrodermataceae/genetics , Australia/epidemiology , DNA, Fungal/analysis , Humans , Incidence , Nails/pathology , Onychomycosis/epidemiology , Onychomycosis/pathology , Polymerase Chain Reaction , Skin/pathology
8.
Article in English | MEDLINE | ID: mdl-25647477

ABSTRACT

Background: Podiatric physicians routinely use electric drills for the treatment of nail and skin conditions. The grinding process produces human nail and skin dust that is generally vacuumed into bags in the grinding unit. Many of the nails are thought to be mycotic, particularly because they are obtained from patients with symptoms of dermatophyte infections. Currently, there is limited information available on the detection of fungi from nail dust samples. Herein, we attempt to address this situation and outline some of the difficulties that pathology laboratories face in isolating and identifying dermatophytes from nail samples. Methods: Fifty nail dust bags from podiatric medical clinics across all of the states and territories of Australia were collected and analyzed. Samples from the bags were inoculated onto primary isolation media. Fungal colonies that grew were then inoculated onto potato dextrose agar for identification using standard morphological (macroscopic and microscopic) features. Results: One hundred fifty-one colonies of dermatophytes were identified from 43 of the 50 samples. In addition 471 nondermatophyte molds were isolated, along with some yeasts and bacteria. Conclusions: The most common dermatophytes isolated were from the Trichophyton mentagrophytes/interdigitale complexes. Trichophyton rubrum, Trichophyton tonsurans, Trichophyton soudanense, and Epidermophyton floccosum were also isolated. An unidentified group of dermatophytes was also present. The three most common genera of nondermatophyte molds were Aspergillus, Penicillium, and Scopulariopsis, all of which have been implicated in onychomycosis and more general disease. The presence of viable fungal pathogens in the dust could potentially pose a health problem to podiatric physicians.

SELECTION OF CITATIONS
SEARCH DETAIL
...