Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 283(42): 28115-24, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18669628

ABSTRACT

Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals. It involves tightly controlled inflammation, proteolysis, and fibrin deposition. We hypothesized that ovarian heparan sulfates may modulate these processes through interactions with effector proteins. Our previous work has shown that anticoagulant heparan sulfates are synthesized by rodent ovarian granulosa cells, and we now have set out to characterize heparan sulfates from human follicular fluid. Here we report the first anticoagulant heparan sulfate purified from a natural human extravascular source. Heparan sulfate chains were fractionated according to their affinity for antithrombin, and their structure was analyzed by 1H NMR and MS/MS. We find that human follicular fluid is a rich source of anticoagulant heparan sulfate, comprising 50.4% of total heparan sulfate. These antithrombin-binding chains contain more than 6% 3-O-sulfated glucosamine residues, convey an anticoagulant activity of 2.5 IU/ml to human follicular fluid, and have an anti-Factor Xa specific activity of 167 IU/mg. The heparan sulfate chains that do not bind antithrombin surprisingly exhibit an extremely high content in 3-O-sulfated glucosamine residues, which suggest that they may exhibit biological activities through interactions with other proteins.


Subject(s)
Anticoagulants/chemistry , Heparitin Sulfate/chemistry , Anticoagulants/metabolism , Chromatography, Gel , Chromatography, Ion Exchange/methods , Female , Follicular Fluid/metabolism , Heparitin Sulfate/metabolism , Humans , Inflammation , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Biological , Models, Chemical , Ovary/metabolism , Sulfur/chemistry , Sulfuric Acid Esters/chemistry
2.
Matrix Biol ; 26(6): 442-55, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17482450

ABSTRACT

Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HS(gD+), 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events.


Subject(s)
Central Nervous System/enzymology , Peripheral Nervous System/enzymology , Sulfotransferases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Brain/enzymology , Brain/metabolism , CHO Cells , Central Nervous System/cytology , Central Nervous System/metabolism , Cricetinae , Cricetulus , Female , Gene Expression Regulation, Enzymologic , Heparitin Sulfate/metabolism , Herpesvirus 1, Human/physiology , Humans , In Situ Hybridization , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Neurons/enzymology , Neurons/metabolism , Peripheral Nervous System/cytology , Peripheral Nervous System/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Substrate Specificity , Sulfotransferases/genetics , Virus Internalization
3.
J Biol Chem ; 280(45): 38059-70, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16107334

ABSTRACT

Endothelial and other select cell types synthesize a subpopulation of heparan sulfate (HS) proteoglycans (HSPGs), anticoagulant HSPGs (aHSPGs) that bear aHS-HS chains with the cognate 3-O-sulfated pentasaccharide motif that can bind and activate anti-thrombin (AT). Endothelial cells regulate aHSPG production by limiting levels of HS 3-O-sulfotransferase-1 (3-OST-1), which modifies a non-limiting pool of aHS-precursors. By probing kidney cryosections with (125)I-AT and fluorescently tagged AT we found that the glomerular basement membrane contains aHSPGs, with the staining pattern implicating synthesis by glomerular epithelial cells (GECs). Indeed, cultured GECs synthesized aHS with high AT affinity that was comparable with the endothelial product. Disaccharide analyses of human GEC (hGEC) HS in conjunction with transcript analyses revealed that hGECs express predominantly 3-OST-1 and 3-OST-3(A). aHS production has not been previously examined in cells expressing multiple 3-OST isoforms. This unusual situation appears to involve novel mechanisms to regulate aHS production, as HS structural analyses suggest hGECs exhibit excess levels of 3-OST-1 and an extremely limiting pool of aHS-precursor. A limiting aHS-precursor pool may serve to minimize aHS synthesis by non-3-OST-1 isoforms. Indeed, we show that high in vitro levels of 3-OST-3(A) can efficiently generate aHS. Non-3-OST-1 isoforms can generate aHS in vivo, as the probing of kidney sections from 3-OST-1-deficient mice revealed GEC synthesis of aHSPGs. Surprisingly, Hs3st1(-/-) kidney only expresses 3-OST isoforms having a low specificity for aHS synthesis. Thus, our analyses reveal a cell type that expresses multiple 3-OST isoforms and produces minimal amounts of aHS-precursor. In part, this mechanism should prevent aHS overproduction by non-3-OST-1 isoforms. Such a role may be essential, as 3-OST isoforms that have a low specificity for aHS synthesis can generate substantial levels of aHSPGs in vivo.


Subject(s)
Anticoagulants/metabolism , Epithelial Cells/enzymology , Heparan Sulfate Proteoglycans/biosynthesis , Kidney Glomerulus/cytology , Sulfotransferases/metabolism , Animals , Cells, Cultured , Epithelial Cells/metabolism , Gene Deletion , Gene Expression Regulation , Isoenzymes/metabolism , Kidney Glomerulus/enzymology , Male , Mice , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sulfotransferases/genetics
4.
J Clin Invest ; 111(7): 989-99, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12671048

ABSTRACT

Endothelial cell production of anticoagulant heparan sulfate (HS(act)) is controlled by the Hs3st1 gene, which encodes the rate-limiting enzyme heparan sulfate 3-O-sulfotransferase-1 (3-OST-1). In vitro, HS(act) dramatically enhances the neutralization of coagulation proteases by antithrombin. The in vivo role of HS(act) was evaluated by generating Hs3st1(-/-) knockout mice. Hs3st1(-/-) animals were devoid of 3-OST-1 enzyme activity in plasma and tissue extracts. Nulls showed dramatic reductions in tissue levels of HS(act) but maintained wild-type levels of tissue fibrin accumulation under both normoxic and hypoxic conditions. Given that vascular HS(act) predominantly occurs in the subendothelial matrix, mice were subjected to a carotid artery injury assay in which ferric chloride administration induces de-endothelialization and occlusive thrombosis. Hs3st1(-/-) and Hs3st1(+/+) mice yielded indistinguishable occlusion times and comparable levels of thrombin.antithrombin complexes. Thus, Hs3st1(-/-) mice did not show an obvious procoagulant phenotype. Instead, Hs3st1(-/-) mice exhibited genetic background-specific lethality and intrauterine growth retardation, without evidence of a gross coagulopathy. Our results demonstrate that the 3-OST-1 enzyme produces the majority of tissue HS(act). Surprisingly, this bulk of HS(act) is not essential for normal hemostasis in mice. Instead, 3-OST-1-deficient mice exhibited unanticipated phenotypes suggesting that HS(act) or additional 3-OST-1-derived structures may serve alternate biologic roles.


Subject(s)
Anticoagulants/pharmacology , Heparitin Sulfate/pharmacology , Animals , Antithrombins/metabolism , Carotid Arteries/pathology , Crosses, Genetic , Endothelium, Vascular/cytology , Endothelium, Vascular/enzymology , Exons , Female , Genotype , Hemostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Genetic , Retroviridae/genetics , Sulfotransferases/metabolism , Thrombin/metabolism , Tissue Distribution
5.
Glycoconj J ; 19(4-5): 355-61, 2002.
Article in English | MEDLINE | ID: mdl-12975616

ABSTRACT

Heparan sulfate that contains antithrombin binding sites is designated as anticoagulant heparan sulfate (HS(act)) since, in vitro, it dramatically enhances the neutralization of coagulation proteases by antithrombin. Endothelial cell production of HS(act) is controlled by the Hs3st1 gene, which encodes the rate limiting enzyme-heparan sulfate 3-O-sulfotransferase-1 (Hs3st1). It has long been proposed that levels of endothelial HS(act) may tightly regulate hemostatic tone. This potential in vivo role of HS(act) was assessed by generating Hs3st1(-/-) knockout mice. Hs3st1(-/-) and Hs3st1(+/+) mice were evaluated with a variety of methods, capable of detecting altered hemostatic tone. However, both genotypes were indistinguishable. Instead, Hs3st1(-/-) mice exhibited lethality on a specific genetic background and also showed intrauterine growth retardation. Neither phenotypes result from a gross coagulopathy. So although this enzyme produces the majority of tissue HS(act), Hs3st1(-/-) mice do not show an obvious procoagulant phenotype. These results suggest that the bulk of HS(act) is not essential for normal hemostasis and that hemostatic tone is not tightly regulated by total levels of HS(act). Moreover, the unanticipated non-thrombotic phenotypes suggest structure(s) derived from this enzyme might serve additional/alternative biologic roles.


Subject(s)
Hemostasis/physiology , Sulfotransferases/deficiency , Animals , Animals, Newborn , Anticoagulants/metabolism , Binding Sites , Blood Coagulation/genetics , Blood Coagulation/physiology , Carbohydrate Sequence , Hemostasis/genetics , Heparitin Sulfate/chemistry , Heparitin Sulfate/physiology , Mice , Mice, Knockout , Molecular Sequence Data , Phenotype , Sulfotransferases/genetics , Sulfotransferases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...