Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 12(1): 277, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35821115

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease with a variety of symptoms such as post-exertional malaise, fatigue, and pain, but where aetiology and pathogenesis are unknown. An increasing number of studies have implicated the involvement of the immune system in ME/CFS. Furthermore, a hereditary component is suggested by the reported increased risk for disease in relatives, and genetic association studies are being performed to identify potential risk variants. We recently reported an association with the immunologically important human leucocyte antigen (HLA) genes HLA-C and HLA-DQB1 in ME/CFS. Furthermore, a genome-wide genetic association study in 42 ME/CFS patients reported significant association signals with two variants in the T cell receptor alpha (TRA) locus (P value <5 × 10-8). As the T cell receptors interact with the HLA molecules, we aimed to replicate the previously reported findings in the TRA locus using a large Norwegian ME/CFS cohort (409 cases and 810 controls) and data from the UK biobank (2105 cases and 4786 controls). We investigated numerous SNPs in the TRA locus, including the two previously ME/CFS-associated variants, rs11157573 and rs17255510. No associations were observed in the Norwegian cohort, and there was no significant association with the two previously reported SNPs in any of the cohorts. However, other SNPs showed signs of association (P value <0.05) in the UK Biobank cohort and meta-analyses of Norwegian and UK biobank cohorts, but none survived correction for multiple testing. Hence, our research did not identify any reliable associations with variants in the TRA locus.


Subject(s)
Fatigue Syndrome, Chronic , Cohort Studies , Fatigue Syndrome, Chronic/genetics , Genetic Association Studies , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
2.
Brain Behav Immun ; 102: 362-369, 2022 05.
Article in English | MEDLINE | ID: mdl-35318112

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown etiology and pathogenesis, which manifests in a variety of symptoms like post-exertional malaise, brain fog, fatigue and pain. Hereditability is suggested by an increased disease risk in relatives, however, genome-wide association studies in ME/CFS have been limited by small sample sizes and broad diagnostic criteria, therefore no established risk loci exist to date. In this study, we have analyzed three ME/CFS cohorts: a Norwegian discovery cohort (N = 427), a Danish replication cohort (N = 460) and a replication dataset from the UK biobank (N = 2105). To the best of our knowledge, this is the first ME/CFS genome-wide association study of this magnitude incorporating 2532 patients for the genome-wide analyses and 460 patients for a targeted analysis. Even so, we did not find any ME/CFS risk loci displaying genome-wide significance. In the Norwegian discovery cohort, the TPPP gene region showed the most significant association (rs115523291, P = 8.5 × 10-7), but we could not replicate the top SNP. However, several other SNPs in the TPPP gene identified in the Norwegian discovery cohort showed modest association signals in the self-reported UK biobank CFS cohort, which was also present in the combined analysis of the Norwegian and UK biobank cohorts, TPPP (rs139264145; P = 0.00004). Interestingly, TPPP is expressed in brain tissues, hence it will be interesting to see whether this association, with time, will be verified in even larger cohorts. Taken together our study, despite being the largest to date, could not establish any ME/CFS risk loci, but comprises data for future studies to accumulate the power needed to reach genome-wide significance.


Subject(s)
Fatigue Syndrome, Chronic , Cohort Studies , Fatigue Syndrome, Chronic/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics , Self Report
3.
Brain Behav Immun ; 98: 101-109, 2021 11.
Article in English | MEDLINE | ID: mdl-34403736

ABSTRACT

The etiology of myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is unknown, but involvement of the immune system is one of the proposed underlying mechanisms. Human leukocyte antigen (HLA) associations are hallmarks of immune-mediated and autoimmune diseases. We have previously performed high resolution HLA genotyping and detected associations between ME/CFS and certain HLA class I and class II alleles. However, the HLA complex harbors numerous genes of immunological importance, and there is extensive and complex linkage disequilibrium across the region. In the current study, we aimed to fine map the association signals in the HLA complex by genotyping five additional classical HLA loci and 5,342 SNPs in 427 Norwegian ME/CFS patients, diagnosed according to the Canadian Consensus Criteria, and 480 healthy Norwegian controls. SNP association analysis revealed two distinct and independent association signals (p ≤ 0.001) tagged by rs4711249 in the HLA class I region and rs9275582 in the HLA class II region. Furthermore, the primary association signal in the HLA class II region was located within the HLA-DQ gene region, most likely due to HLA-DQB1, particularly the amino acid position 57 (aspartic acid/alanine) in the peptide binding groove, or an intergenic SNP upstream of HLA-DQB1. In the HLA class I region, the putative causal locus might map outside the classical HLA genes as the association signal spans several genes (DDR1, GTF2H4, VARS2, SFTA2 and DPCR1) with expression levels influenced by the ME/CFS associated SNP genotype. Taken together, our results implicate the involvement of the MHC, and in particular the HLA-DQB1 gene, in ME/CFS. These findings should be replicated in larger cohorts, particularly to verify the putative involvement of HLA-DQB1, a gene important for antigen-presentation to T cells and known to harbor alleles providing the largest risk for well-established autoimmune diseases.


Subject(s)
Fatigue Syndrome, Chronic , Alleles , Canada , Fatigue Syndrome, Chronic/genetics , HLA Antigens , HLA-DQ Antigens/genetics , Humans , Major Histocompatibility Complex , Valine-tRNA Ligase
4.
Sci Rep ; 10(1): 9101, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499510

ABSTRACT

Alpha defensins are anti-microbial peptides of the innate immune system. The defensin A1 and A3 genes are located in a repeat array of variable copy number (the DEFA1A3 locus) and encode the human neutrophil peptides 1, 2 and 3. The possibility that copy number variation (CNV) may be associated with infection susceptibility and autoimmune pathology motivated the study of DEFA1A3 CNV across populations. We enhanced two existing methods (one qPCR-based and one sequencing-based) to enable copy number estimation that discriminates between DEFA1 and DEFA3 genes. We used these methods to quantify A1/A3 copy number variation in 2504 samples from the 1000 Genomes high-coverage dataset as well as performing FiberFISH assays on selected samples to visualize the haplotypes. These methods produce accurate estimates and show that there are substantial differences between populations. The African population is a clear outlier with a high frequency of the ancestral pure DEFA1 haplotype, but also harbours exceptionally long haplotypes of 24 copies of both DEFA1 and DEFA3, whilst the East Asian population displays the highest mean level of DEFA3 copy number. Further, our findings demonstrate that qPCR can be an accurate method for CNV estimation and that defensins substantially extend the known range of copy number variation for a human protein-coding gene.


Subject(s)
Alleles , Asian People/genetics , Black People/genetics , DNA Copy Number Variations/genetics , Genetic Loci/genetics , Genetics, Population , Genome, Human/genetics , alpha-Defensins/genetics , Haplotypes , Humans , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...