Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 27(5): 682-97, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25965573

ABSTRACT

Metastatic dissemination is the leading cause of death in cancer patients, which is particularly evident for high-risk sarcomas such as Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma. Previous research identified a crucial role for YB-1 in the epithelial-to-mesenchymal transition (EMT) and metastasis of epithelial malignancies. Based on clinical data and two distinct animal models, we now report that YB-1 is also a major metastatic driver in high-risk sarcomas. Our data establish YB-1 as a critical regulator of hypoxia-inducible factor 1α (HIF1α) expression in sarcoma cells. YB-1 enhances HIF1α protein expression by directly binding to and activating translation of HIF1A messages. This leads to HIF1α-mediated sarcoma cell invasion and enhanced metastatic capacity in vivo, highlighting a translationally regulated YB-1-HIF1α axis in sarcoma metastasis.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Neoplasm Metastasis , Protein Biosynthesis , Sarcoma/pathology , Y-Box-Binding Protein 1/physiology , Humans , Neoplasm Invasiveness , Sarcoma/genetics , Von Hippel-Lindau Tumor Suppressor Protein/physiology
2.
J Cell Biol ; 208(7): 913-29, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25800057

ABSTRACT

Under cell stress, global protein synthesis is inhibited to preserve energy. One mechanism is to sequester and silence mRNAs in ribonucleoprotein complexes known as stress granules (SGs), which contain translationally silent mRNAs, preinitiation factors, and RNA-binding proteins. Y-box binding protein 1 (YB-1) localizes to SGs, but its role in SG biology is unknown. We now report that YB-1 directly binds to and translationally activates the 5' untranslated region (UTR) of G3BP1 mRNAs, thereby controlling the availability of the G3BP1 SG nucleator for SG assembly. YB-1 inactivation in human sarcoma cells dramatically reduces G3BP1 and SG formation in vitro. YB-1 and G3BP1 expression are highly correlated in human sarcomas, and elevated G3BP1 expression correlates with poor survival. Finally, G3BP1 down-regulation in sarcoma xenografts prevents in vivo SG formation and tumor invasion, and completely blocks lung metastasis in mouse models. Together, these findings demonstrate a critical role for YB-1 in SG formation through translational activation of G3BP1, and highlight novel functions for SGs in tumor progression.


Subject(s)
Carrier Proteins/genetics , Cytoplasmic Granules/genetics , Protein Biosynthesis/genetics , Stress, Physiological/genetics , Y-Box-Binding Protein 1/genetics , 5' Untranslated Regions/genetics , Animals , Binding Sites , Carrier Proteins/biosynthesis , DNA Helicases , Humans , Ki-67 Antigen/biosynthesis , Lung Neoplasms/secondary , Mice , Mice, Inbred NOD , Mice, SCID , Oxidative Stress/genetics , Poly-ADP-Ribose Binding Proteins , Protein Binding , RNA Helicases , RNA Interference , RNA Recognition Motif Proteins , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering , RNA-Binding Proteins/metabolism , Sarcoma/pathology , Y-Box-Binding Protein 1/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...