Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 76(1): 28-35, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23034869

ABSTRACT

Scanning electron microscopy and atomic force microscopy were used to study the silk spinning apparatus and silks of Harpactea rubicunda spiders. Three types of silk secretions that are produced by three kinds of silk spinning glands (ampullate, piriform, and pseudaciniform) and released through three types of spigots, were confirmed for both adult and juvenile spiders. Silk secretions for the construction of spider webs for shelter or retreat are produced by the pseudaciniform silk glands. Silk secretions that are released from spigots in the course of web construction are not processed by the legs during the subsequent process of hardening. Pairs of nanofibril bundles seemed to be part of the basic microarchitecture of the web silk fibers as revealed by AFM. These fiber bundles frequently not only overlap one another, but occasionally also interweave. This structural variability may strengthen the spider web. High-resolution AFM scans of individual nanofibrils show a distinctly segmented nanostructure. Each globular segment is ∼30-40 nm long along the longitudinal axis of the fiber, and resembles a nanosegment of artificial fibroin described by Perez-Rigueiro et al. (2007).


Subject(s)
Animal Structures/ultrastructure , Silk/ultrastructure , Spiders/ultrastructure , Animal Structures/metabolism , Animals , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Silk/metabolism , Spiders/metabolism
2.
J Morphol ; 270(10): 1269-83, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19459192

ABSTRACT

Cocoons of Theridiosoma gemmosum consist of two main parts, the egg sac case and the stalk. The inner space of the egg sac case is filled with nonsticky flocculent silk. Measuring 600-800 nm in diameter, the flocculent threads are never made up of bundles of longitudinally oriented nanofibrils. The egg case wall consists of a lower layer of highly ordered threads and an upper layer of cover silk. The lower, permanently white layer consists of threads in a mesh-like arrangement, the thicker threads being 4-6 microm and the thinner threads being 2-3 microm in diameter. Each thread is a bundle of parallel nanofibrils, with a diameter between 150 and 300 nm. The silk secretions of these fibers, emitted from spigots, are processed by legs. The upper layer of the egg case is applied to the threads of the lower layer by direct rubbing against its surface, i.e. without the use of legs. In the lower and middle part of the egg case, the accumulated secretion forms a virtually compact encrustation, whereas in the upper, conically shaped, part of the egg case where it becomes the stalk, this secretion becomes substantially scarcer. The stalk is a continuation of the egg case, its proximal part made of fibers similar to those forming the inner layer of the egg case wall. The distal part of the stalk continues towards the suspension area either as a compact bundle of parallel fibers, or the stalk forks into two bundles of roughly the same thickness, which continue towards the suspension area separately. On the surface of objects onto which cocoons are attached, the secretion of the piriform glands acts as an adhesive sheet.


Subject(s)
Exocrine Glands/physiology , Ovum/physiology , Silk/ultrastructure , Spiders/anatomy & histology , Spiders/physiology , Animals , Female , Microscopy, Electron, Scanning , Spiders/ultrastructure
3.
Zoology (Jena) ; 106(3): 223-31, 2003.
Article in English | MEDLINE | ID: mdl-16351906

ABSTRACT

The spider species Trogloneta granulum, which in the wild lives inside scree slopes, builds three-dimensional orb webs. During egg-laying and egg sac building, the females stay with their dorsa down at the central part of the web. In this process, the hub is used as a platform. The threads of the hub are not incorporated into the silk cover of the egg sac. The silk wall of the egg sac is very thin, with all the silken threads constituting it having a uniform ultrastructure. The silk wall of the egg sac and the spinnerets are permanently linked by a dragline. Draglines produced by T. granulum affect the direction of movements of the female carrying its cocoon. Egg sacs are handled using draglines. The low number of piriform glands leads to the formation of very simple attachment discs, which fix the individual threads to the substratum. Thread bundles are attached to the substratum by means of accumulated attachment discs.

SELECTION OF CITATIONS
SEARCH DETAIL
...