Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 13(4): e067784, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012023

ABSTRACT

INTRODUCTION: Persistent spine pain syndrome type 2 (PSPS2) represents a significant burden to the individual and society. Treatment options include revision surgery, stabilisation surgery of the spine, neuromodulation, analgesics and cognitive behavioural therapy. Nevertheless, structured treatment algorithms are missing as high-level evidence on the various treatments is sparse. The aim of this study is to compare higher frequency neuromodulation with instrumentation surgery in patients suffering from PSPS2. METHODS AND ANALYSIS: The sPinal coRd stimulatiOn coMpared with lumbar InStrumEntation for low back pain after previous lumbar decompression (PROMISE) trial is a prospective randomised rater blinded multicentre study. Patients suffering from PSPS2 with a functional burden of Oswestry Disability Index (ODI) >20 points are randomised to treatment via spinal cord stimulation or spinal instrumentation. Primary outcome is back-related functional outcome according to the ODI 12 months after treatment. Secondary outcomes include pain perception (visual analogue scale), Short Form-36, EuroQOL5D, the amount of analgesics, the length of periprocedural hospitalisation and adverse events. Follow-up visits are planned at 3 and 12 months after treatment. Patients with previous lumbar instrumentation, symptomatic spinal stenosis, radiographical apparent spinal instability or severe psychiatric or systemic comorbidities are excluded from the study. In order to detect a significant difference of ≥10 points (ODI) with a power of 80%, n=72 patients need to be included. The recruitment period will be 24 months with a subsequent 12 months follow-up. The beginning of enrolment is planned for October 2022. ETHICS AND DISSEMINATION: The PROMISE trial is the first randomised rater blinded multicentre study comparing the functional effectiveness of spinal instrumentation versus neuromodulation in patients with PSPS2 in order to achieve high-level evidence for these commonly used treatment options in this severely disabling condition. Patient recruitment will be performed at regular outpatient clinic visits. No further (print, social media) publicity is planned. The study is approved by the local ethics committee (LMU Munich, Germany) and will be conducted according to the Declaration of Helsinki. TRIAL REGISTRATION NUMBER: NCT05466110.


Subject(s)
Low Back Pain , Spinal Cord Stimulation , Spinal Stenosis , Humans , Treatment Outcome , Prospective Studies , Lumbar Vertebrae/surgery , Spinal Stenosis/surgery , Decompression, Surgical/methods
2.
Neurosurg Rev ; 46(1): 36, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36640226

ABSTRACT

Rechargeable implantable pulse generators (r-IPGs) have been available for spinal cord stimulation (SCS) claiming to offer a longer service life but demanding continuous monitoring and regular recharging by the patients. The aim of the study (DRKS00021281; Apr 7th, 2020) was to assess the convenience, safety, and acceptance of r-IPGs and their effect on patient lives under long-term therapy. Standardized questionnaires were sent to all chronic pain patients with a r-IPG at the time of trial. Primary endpoint was the overall convenience of the charging process on an ordinal scale from "very hard" (1 point) to "very easy" (5 points). Secondary endpoints were charge burden (min/week), rates of user confidence and complications (failed recharges, interruptions of therapy). Endpoints were analyzed for several subgroups. Data sets n = 40 (42% return rate) were eligible for analysis. Patient age was 57.2 ± 12.6 (mean ± standard deviation) years with the r-IPG being implanted for 52.1 ± 32.6 months. The overall convenience of recharging was evaluated as "easy" (4 points). The charge burden was 112.7 ± 139 min/week. 92% of the patients felt confident recharging the neurostimulator. 37.5% of patients reported failed recharges. 28.9% of patients experienced unintended interruptions of stimulation. Subgroup analysis only showed a significant impact on overall convenience for different models of stimulators (p < 0.05). Overall, SCS patients feel confident handling a r-IPG at high rates of convenience and acceptable effort despite high rates of usage-related complications. Further technical improvements for r-IPGs are needed.


Subject(s)
Chronic Pain , Deep Brain Stimulation , Spinal Cord Stimulation , Humans , Adult , Middle Aged , Aged , Electrodes, Implanted , Retrospective Studies , Chronic Pain/therapy , Spinal Cord/surgery
3.
World Neurosurg ; 170: e331-e339, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36368453

ABSTRACT

BACKGROUND: Rechargeable implantable pulse generators (r-IPGs) for deep brain stimulation (DBS) promise longer battery life and fewer replacement surgeries versus non-rechargeable systems. Long-term data on the effects of recharging in patients who received DBS for psychiatric indications is limited. The Recharge PSYCH trial is the first study that included DBS patients with psychiatric disorders treated with different r-IPG models. METHODS: Standardized questionnaires were sent to all psychiatric DBS patients with an r-IPG implanted at the time of the study. The primary endpoint was convenience of recharging. Secondary endpoints were rate of user confidence and rate of usage-related complications, as well as charge burden (defined as minutes per week needed to recharge). RESULTS: Data sets of n = 21 patients were eligible for data analysis. At the time of the survey patients were implanted with the r-IPG for a mean 31.8 ± 22.4 months. Prior to being implanted with an r-IPG, patients had undergone a median of 3 IPG replacements. The overall convenience of the charging process was rated as "easy" with a median of 8.0 out of 10.0 points. 33.3% of patients experienced situations in which the device could not be successfully recharged. In 38.1% of patients, therapy with the r-IPG was interrupted unintentionally. The average charge burden was 286 ± 22.4 minutes per week. CONCLUSIONS: Patients with psychiatric disorders rated the recharging process as "easy", but with a significantly higher charge burden and usage-related complication rates compared to published data on movement disorder DBS patients.


Subject(s)
Deep Brain Stimulation , Mental Disorders , Movement Disorders , Humans , Electrodes, Implanted , Movement Disorders/therapy , Mental Disorders/therapy , Electric Power Supplies
4.
Sci Rep ; 12(1): 8127, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581207

ABSTRACT

Spinal cord stimulation (SCS) has been utilized for more than 50 years to treat refractory neuropathic pain. Currently, SCS systems with fully implantable pulse generators (IPGs) represent the standard. New wireless extracorporeal SCS (wSCS) devices without IPGs promise higher levels of comfort and convenience for patients. However, to date there are no studies on how charging and using this wSCS system affects patients and their therapy. This study is the first questionnaire-based survey on this topic focusing on patient experience. The trial was a single arm, open-label and mono-centric phase IV study. Standardized questionnaires were sent to all patients with a wSCS device in use at the time of trial. The primary endpoint was the convenience of the charging and wearing process scored on an ordinal scale from "very hard" (1) to "very easy" (5). Secondary endpoints included time needed for charging, the duration of stimulation per day and complication rates. Questionnaires of 6 out of 9 patients were returned and eligible for data analysis. The mean age of patients was 61.3 ± 6.7 (± SD) years. The duration of therapy was 20.3 ± 15.9 months (mean ± SD). The mean duration of daily stimulation was 17 ± 5.9 h (mean ± SD). n = 5 patients rated the overall convenience as "easy" (4) and n = 3 patients evaluated the effort of the charging process and wearing of the wSCS device as "low" (4). n = 5 patients considered the wearing and charging process as active participation in their therapy. n = 5 patients would choose an extracorporeal device again over a conventional SCS system. Early or late surgical complications did not occur in this patient collective. Overall, patients felt confident using extracorporeal wSCS devices without any complications. Effort to maintain therapy with this system was rated as low.


Subject(s)
Neuralgia , Spinal Cord Stimulation , Aged , Humans , Middle Aged , Neuralgia/etiology , Spinal Cord , Surveys and Questionnaires , Treatment Outcome
5.
Neuromodulation ; 24(6): 1115-1120, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34313358

ABSTRACT

INTRODUCTION: Subcutaneous trigeminal nerve field stimulation (sTNFS) is a neuromodulatory treatment for neuropathic trigeminal pain with the ability to reduce the intensity and frequency of pain attacks. However, hardware issues including lead migration, skin erosion, infection, so-called pocket pain at the site of the implanted neurostimulator are reported. Implantable wireless neurostimulation technology promises not only an even less invasive sTNFS treatment and thinner and more flexible electrodes better suited for facial implants, but also provides further advantages such as lack of an implantable neurostimulator and 3T magnetic resonance imaging compatibility. MATERIAL AND METHODS: All patients who had received trial stimulation with a partially implantable sTNFS system were analyzed for ICHD-3 (3rd edition of the International Classification of Headache Disorders) diagnosis, success of trial stimulation, pre- and postoperative pain intensity, frequency of attacks, complications, and side-effects of sTNFS. RESULTS: All patients (N = 3) responded to sTNFS (≥50% pain reduction) during the trial period. According to ICHD-3, N = 2 of the patients were classified with trigeminal neuralgia (TN) with concomitant persistent facial pain and N = 1 patient with multiple sclerosis associated TN. The time of the test period was 44 ± 31.24 days (mean ± SD). The average daily duration of stimulation per patient amounted 2.5 ± 2.2 hours (range 1-5). The pain intensity (defined on a visual analog scale) was reduced by 80% ± 17% (mean ± SD). Reduction or cessation in pain medication was observed in all patients. No surgical complications occurred in the long-term follow-up period of 18.84 ± 6 (mean ± SD) months. CONCLUSION: The partially implantable sTNFS device seems to be safe, effective, and reliable. Compared to conventional devices, the equipment is not limited to the length of trial stimulation. Furthermore, the daily stimulation duration was much shorter compared to previous reports.


Subject(s)
Electric Stimulation Therapy , Pain, Intractable , Electric Stimulation Therapy/adverse effects , Electrodes, Implanted , Humans , Pain, Intractable/therapy , Treatment Outcome , Trigeminal Nerve
6.
Trials ; 22(1): 87, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494781

ABSTRACT

BACKGROUND: Spinal cord stimulation (SCS) is an effective method to treat neuropathic pain; however, it is challenging to compare different stimulation modalities in an individual patient, and thus, it is largely unknown which of the many available SCS modalities is most effective. Specifically, electrodes leading out through the skin would have to be consecutively connected to different, incompatible SCS devices and be tested over a time period of several weeks or even months. The risk of wound infections for such a study would be unacceptably high and blinding of the trial difficult. The PARS-trial seizes the capacity of a new type of wireless SCS device, which enables a blinded and systematic intra-patient comparison of different SCS modalities over extended time periods and without increasing wound infection rates. METHODS: The PARS-trial is designed as a double-blinded, randomized, and placebo-controlled multi-center crossover study. It will compare the clinical effectiveness of the three most relevant SCS paradigms in individual patients. The trial will recruit 60 patients suffering from intractable neuropathic pain of the lower extremities, who have been considered for SCS therapy and were already implanted with a wireless SCS device prior to study participation. Over a time period of 35 days, patients will be treated consecutively with three different SCS paradigms ("burst," "1 kHz," and "1.499 kHz") and placebo stimulation. Each SCS paradigm will be applied for 5 days with a washout period of 70 h between stimulation cycles. The primary endpoint of the study is the level of pain self-assessment on the visual analogue scale after 5 days of SCS. Secondary, exploratory endpoints include self-assessment of pain quality (as determined by painDETECT questionnaire), quality of life (as determined by Quality of Life EQ-5D-5L questionnaire), anxiety perception (as determined by the Hospital Anxiety and Depression Scale), and physical restriction (as determined by the Oswestry Disability Index). DISCUSSION: Combining paresthesia-free SCS modalities with wireless SCS offers a unique opportunity for a blinded and systematic comparison of different SCS modalities in individual patients. This trial will advance our understanding of the clinical effectiveness of the most relevant SCS paradigms. TRIAL REGISTRATION: German Clinical Trials Register, DRKS00018929 . Registered on 14 January 2020.


Subject(s)
Chronic Pain/therapy , Neuralgia/therapy , Spinal Cord Stimulation/methods , Adult , Chronic Pain/diagnosis , Cross-Over Studies , Diagnostic Self Evaluation , Double-Blind Method , Female , Humans , Implantable Neurostimulators/adverse effects , Male , Multicenter Studies as Topic , Neuralgia/diagnosis , Pain Measurement , Quality of Life , Randomized Controlled Trials as Topic , Spinal Cord Stimulation/adverse effects , Spinal Cord Stimulation/instrumentation , Treatment Outcome , Wireless Technology/instrumentation
7.
Neuromodulation ; 24(3): 591-595, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32232943

ABSTRACT

OBJECTIVES: A new wireless spinal cord stimulation (SCS) technology, which was introduced in recent years, promises minimal invasive SCS as well as additional advantages such as a wide range of stimulation paradigms and 3-T magnetic resonance imaging (MRI) conditionality. MATERIALS AND METHODS: We prospectively evaluated 12 patients suffering from therapy-resistant neuropathic pain, who were implanted with a wireless SCS system from 2017 to 2019. Potential issues pertaining to handling and usability of the SCS device were evaluated from a patients' as well as from a surgeon's perspective. RESULTS: Mean follow-up was 228.0 days (95% CI, 20.0-518.0 days). We did not record any handling issues nor did we record any relevant local discomfort associated with the implanted SCS device. N = 3/12 patients reported discomfort from wearing the SCS antenna and one patient complained about a short battery life of the controller device. There were no reported incidents during 3-T MRI studies. After an average test period of 51.7 days (95% CI, 11.0-104.0 days), N = 9/12 patients (75%) had reached pain relief of 50% or more with an average pain relief (responders and partial responders) of 67.4% (95% CI, 50.0%-85.0%). On average, patients tested 2.2 different stimulation paradigms, with frequencies ranging from 60 Hz to 10 kHz, but there was no preferred stimulation paradigm. CONCLUSIONS: Minimal invasive implantation of wireless SCS systems was feasible and safe. The device offered a broader range of stimulation paradigms compared to conventional SCS devices, an allowed for a prolonged testing phase and continuous adjustment of SCS programs.


Subject(s)
Neuralgia , Spinal Cord Stimulation , Humans , Neuralgia/therapy , Pain Management , Spinal Cord/diagnostic imaging , Technology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...