Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Vitam Nutr Res ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407143

ABSTRACT

According to previous studies, astaxanthin exerts various biological effects due to its anti-inflammatory and antioxidant capabilities; however, its effects on liver enzymes have not yet been well elucidated. Therefore, we conducted a meta-analysis to assess astaxanthin's effects on liver enzymes. A systematic literature search was conducted using scientific databases including PubMed, Scopus, Web of Science, the Cochrane databases, and Google Scholar up to February 2023 to find relevant randomized controlled trials (RCTs) examining the effects of astaxanthin supplementation on alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP). A random-effects model was used for the estimation of the pooled weighted mean difference (WMD). Overall, we included five trials involving 196 subjects. The duration of the intervention was between 4 and 48 weeks, and the dose was between 6 and 12 mg/day. ALT levels increased in the intervention group compared to the control group following astaxanthin supplementation (WMD: 1.92 U/L, 95% CI: 0.16 to 3.68, P=0.03), whereas supplementation with astaxanthin had a non-significant effect on AST (WMD: 0.72 U/L, 95% CI: -0.85 to 2.29, P=0.36), GGT (WMD: 0.48 U/L, 95% CI: -2.71 to 3.67, P=0.76), and ALP levels (WMD: 2.85 U/L, 95% CI: -7.94 to 13.63, P=0.60) compared to the placebo group. Our data showed that astaxanthin supplementation increases ALT concentrations in adults without affecting the levels of other liver enzymes. Further long-term and well-designed RCTs are necessary to assess and confirm these findings.

2.
Int J Reprod Biomed ; 20(11): 941-954, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36618833

ABSTRACT

Background: Despite the effectiveness of testosterone therapy in conditions associated with testosterone deficiency, including varicocele, several dose-dependent side effects limit the clinical use of testosterone therapy. Hydrogen sulfide, a toxic gas in high concentrations but a beneficial molecule in low concentrations, acts as both a major effector and an important inducer of testosterone. Objective: This study investigated whether a subeffective dose of testosterone combined with a subeffective dose of hydrogen sulfide donor sodium hydrosulfide (NaHS) can be effective in an experimental varicocele model through a possible additive effect. Materials and Methods: Thirty Wistar rats weighing 200-250 gr were divided into 5 groups as (n = 6/each): sham, varicocele, testosterone (200 µg/kg, 5 times per wk for 4 consecutive weeks), NaHS (15 µmol/L, daily for 4 consecutive wk) and testosterone + NaHS (200 µg/kg, 5 times per wk + 15 µmol/L, daily, both for 4 consecutive wk). All animals, except in the sham group, underwent varicocele induction. Results: The coadministration of testosterone and NaHS significantly increased serum testosterone (10.23 ± 0.95, p = 0.01), testicular H2S levels (608.94 ± 21.09, p < 0.001), and testicular superoxide dismutase activity (66.14 ± 1.56, p < 0.001), decreased malondialdehyde levels (0.77 ± 0.52, p < 0.001), and B-cell lymphoma 2-associated X protein to B-cell lymphoma 2 (0.16 ± 0.01, p < 0.001) protein expression ratio in the testicular tissues and improved sperm parameters and testicular histopathology compared to the varicocele group. Conclusion: The combination therapy of subeffective doses of testosterone and NaHS can attenuate the varicocele-induced damages by reducing testicular oxidative stress and apoptosis and thus can be considered an effective approach with fewer side effects.

3.
Clin Nutr ; 40(4): 1767-1775, 2021 04.
Article in English | MEDLINE | ID: mdl-33129596

ABSTRACT

BACKGROUND & AIMS: The present systematic review and meta-analysis were conducted to investigate the effects of capsinoids and fermented red pepper paste (FRPP) supplementation on Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP). METHODS: Relevant studies, published up to May 2020, were searched through PubMed/Medline, Scopus, ISI Web of Science, Embase, and Google Scholar. All randomized clinical trials investigating the effect of capsinoids and FRPP supplementation on blood pressure including SBP and DBP were included. RESULTS: Out of 335 citations, 7 trials that enrolled 363 subjects were included. Capsinoids and FRPP resulted in significant reduction in DBP (Weighted mean differences (WMD): -1.90 mmHg; 95% CI, -3.72 to -0.09, P = 0.04) but no significant change in SBP (WMD: 0.55 mmHg, 95% CI: -1.45, 2.55, P = 0.588). FRPP had a significant reduction in SBP. Greater effects on SBP were detected in trials, lasted ≥12 weeks, and sample size >50. Capsinoids with dosage ≤200 and FRPP with dosage of 11.9 g significantly decreased DBP. CONCLUSION: Overall, these data suggest that supplementation with FRPP may play a role in improving SBP and DBP but for capsinoids no effects detected in this analysis on SBP and DBP.


Subject(s)
Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Dietary Supplements , Hypertension/drug therapy , Capsicum , Fermentation , Humans , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...