Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38534494

ABSTRACT

Kidney disease remains one of the most common ailments worldwide, with cancer being one of its most common forms. Early diagnosis can significantly increase the good prognosis for the patient. The development of an artificial intelligence-based system to assist in kidney cancer diagnosis is crucial because kidney illness is a global health concern, and there are limited nephrologists qualified to evaluate kidney cancer. Diagnosing and categorising different forms of renal failure presents the biggest treatment hurdle for kidney cancer. Thus, this article presents a novel method for detecting and classifying kidney cancer subgroups in Computed Tomography (CT) images based on an asymmetric local statistical pixel distribution. In the first step, the input image is non-overlapping windowed, and a statistical distribution of its pixels in each cancer type is built. Then, the method builds the asymmetric statistical distribution of the image's gradient pixels. Finally, the cancer type is identified by applying the two built statistical distributions to a Deep Neural Network (DNN). The proposed method was evaluated using a dataset collected and authorised by the Dhaka Central International Medical Hospital in Bangladesh, which includes 12,446 CT images of the whole abdomen and urogram, acquired with and without contrast. Based on the results, it is possible to confirm that the proposed method outperformed state-of-the-art methods in terms of the usual correctness criteria. The accuracy of the proposed method for all kidney cancer subtypes presented in the dataset was 99.89%, which is promising.

2.
Sensors (Basel) ; 22(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559937

ABSTRACT

Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning-among others-mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.


Subject(s)
Heart Diseases , Heart Sounds , Humans , Neural Networks, Computer , Signal Processing, Computer-Assisted , Machine Learning
3.
Sensors (Basel) ; 22(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214436

ABSTRACT

The analysis of ambient sounds can be very useful when developing sound base intelligent systems. Acoustic scene classification (ASC) is defined as identifying the area of a recorded sound or clip among some predefined scenes. ASC has huge potential to be used in urban sound event classification systems. This research presents a hybrid method that includes a novel mathematical fusion step which aims to tackle the challenges of ASC accuracy and adaptability of current state-of-the-art models. The proposed method uses a stereo signal, two ensemble classifiers (random subspace), and a novel mathematical fusion step. In the proposed method, a stable, invariant signal representation of the stereo signal is built using Wavelet Scattering Transform (WST). For each mono, i.e., left and right, channel, a different random subspace classifier is trained using WST. A novel mathematical formula for fusion step was developed, its parameters being found using a Genetic algorithm. The results on the DCASE 2017 dataset showed that the proposed method has higher classification accuracy (about 95%), pushing the boundaries of existing methods.


Subject(s)
Acoustics , Wavelet Analysis , Algorithms , Sound
SELECTION OF CITATIONS
SEARCH DETAIL
...