Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Environ Au ; 4(2): 126, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38525019

ABSTRACT

[This corrects the article DOI: 10.1021/acsenvironau.3c00023.].

2.
ACS Environ Au ; 3(6): 336-341, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38028740

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-quinone (6PPD-Q), a transformation byproduct of 6PPD used in tires as an antiozonant and antioxidant, was recently discovered as the chemical primarily responsible for the acute lethal toxicity of urban storm runoff to coho salmon. The asphalt concrete (AC) surface layer is the primary medium to contact 6PPD-Q immediately upon its release from tires, and the addition of recycled tire rubber (RTR) to the asphalt binder and mixture is a widely accepted practice in asphalt production. Therefore, it is urgent to understand the fate of 6PPD-Q at the asphalt concrete surface layer-water interface. This study analyzed the sorption and desorption of 6PPD-Q by compacted and crushed loose (loose particles, ∼5 mm) rubberized asphalt mixtures and their mobilization from compacted asphalt mixtures during simulated rainfall events. It should be noted that the crushed loose asphalt mixtures demonstrated the physicochemical properties of the asphalt materials, while the compacted asphalt mixtures represent in-service AC layers. Sorption of 6PPD-Q by crushed loose and compacted asphalt mixtures reached equilibrium within 12 days, with a sorption coefficient of 151.57-257.51 L/kg for compacted asphalt mixtures. Within 12 days, desorption of 6PPD-Q from crushed loose and compacted rubberized asphalt mixtures (20 g particles/L) to the double deionized (DDI) water and synthetic stormwater was 0.01-0.09 and 0.025-0.05 µg/L, respectively. Through the rainfall simulation experiments, 0.0015-0.0049 µg/L 6PPD-Q was detected in the runoff water, much lower than the lethal concentration (LC50) of 6PPD-Q of 0.095 µg/L and 308.67 µg/L for coho salmon and zebrafish larvae. Our results indicate that, while the release of 6PPD-Q from compacted rubberized asphalt mixtures is minor, the mixtures can serve as sorbents for tire-derived 6PPD-Q and retain this emerging contaminant.

3.
Materials (Basel) ; 15(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36363053

ABSTRACT

The sustainability of roadway construction has rapidly been gaining attention within the pavement industry. The pavements examined in this study are in a Northern Nevada county with many of the roadways categorized as low volume roads. The county began surfacing rural roads with 100% Reclaimed Asphalt Pavement (RAP) millings, without any design considerations for decades. These pavements have provided satisfactory performance with little to no maintenance for their intended purpose for 25-30 years. The presented research revealed RAP milling surfaced roads with layer coefficients between 0.18 and 0.30, and design thicknesses ranging from 5 to 11 inches.

4.
Anesth Essays Res ; 11(1): 197-200, 2017.
Article in English | MEDLINE | ID: mdl-28298784

ABSTRACT

BACKGROUND: Pressure controlled ventilation (PCV) is the preferable mode of ventilation of nonparalyzed patients undergoing anesthesia with laryngeal mask airway (LMA) as compared to volume controlled ventilation (VCV) and spontaneously breathing patient. In this study, we compared the PC-volume guarantee (PC-VG) mode of ventilation with VCV and PCV modes. MATERIALS AND METHODS: A total of 30 patients, American Society of Anesthesiologists (ASA) physical status Classes I and II, scheduled for elective surgery under general anesthesia with a classic LMA were ventilated, subsequently, with the three modes of ventilation: VCV, PCV, and PC-VG for 10 min each mode. Tidal volume set for all patients was 8 ml/kg of ideal body weight. Parameters measured with modes of ventilation include peak inspiratory pressure (PIP), compliance, measured tidal volume, O2 saturation, end-tidal CO2, and presence of an oropharyngeal leak. RESULTS: The PIP was significantly higher with the application of VCV mode of ventilation than PCV and PC-VG modes. The compliance was significantly lower when using the mode of ventilation VCV than PCV and PC-VG. The PIP and the compliance were not statistically different between the PCV and PC-VG modes of ventilation. CONCLUSIONS: Ventilation of nonparalyzed patients with LMA under anesthesia with PC-VG is advantageous over VCV in reducing PIP and increasing lung compliance. No difference was noted between PCV and PC-VG in ASA Classes I or II under the adequate depth of anesthesia in patients with normal pulmonary function.

SELECTION OF CITATIONS
SEARCH DETAIL
...