Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Rev Cancer ; 24(3): 165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37968378
2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958846

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with few effective treatment strategies. The research on the development of new treatments is often constrained by the limitations of preclinical models, which fail to accurately replicate the disease's essential characteristics. Herein, we describe the obtention, molecular, and functional characterization of the GBM33 cell line. This cell line belongs to the GBM class according to the World Health Organization 2021 Classification of Central Nervous System Tumors, identified by methylation profiling. GBM33 expresses the astrocytic marker GFAP, as well as markers of neuronal origin commonly expressed in GBM cells, such as ßIII-tubulin and neurofilament. Functional assays demonstrated an increased growth rate when compared to the U87 commercial cell line and a similar sensitivity to temozolamide. GBM33 cells retained response to serum starvation, with reduced growth and diminished activation of the Akt signaling pathway. Unlike LN-18 and LN-229 commercial cell lines, GBM33 is able to produce primary cilia upon serum starvation. In summary, the successful establishment and comprehensive characterization of this GBM cell line provide researchers with invaluable tools for studying GBM biology, identifying novel therapeutic targets, and evaluating the efficacy of potential treatments.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/metabolism , Brazil , Brain Neoplasms/metabolism , Cell Line, Tumor , Tubulin/metabolism
3.
J Bras Pneumol ; 47(6): e20210129, 2021.
Article in English, Portuguese | MEDLINE | ID: mdl-34909922

ABSTRACT

Malignant mesotheliomas are rare types of cancers that affect the mesothelial surfaces, usually the pleura and peritoneum. They are associated with asbestos exposure, but due to a latency period of more than 30 years and difficult diagnosis, most cases are not detected until they reach advanced stages. Treatment options for this tumor type are very limited and survival ranges from 12 to 36 months. This review discusses the molecular physiopathology, current diagnosis, and latest therapeutic options for this disease.


Subject(s)
Asbestos , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Asbestos/toxicity , Humans , Mesothelioma/therapy , Pleura , Pleural Neoplasms/diagnosis , Pleural Neoplasms/therapy
4.
J Mol Diagn ; 22(7): 957-966, 2020 07.
Article in English | MEDLINE | ID: mdl-32380172

ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor in children. It is currently classified in four main molecular subgroups with different clinical outcomes: sonic hedgehog, wingless, group 3, and group 4 (MBSHH, MBWNT, MBGRP3, or MBGRP4). Presently, a 22-gene expression panel has been efficiently applied for molecular subgrouping using nCounter technology. In this study, formalin-fixed, paraffin-embedded samples from 164 Brazilian medulloblastomas were evaluated, applying the 22-gene panel, and subclassified into the low and high expression of nine key medulloblastoma-related genes. In addition, TP53 mutation status was assessed using TruSight Tumor 15 Panel, and its correlation with expression and prognostic impact was evaluated. Samples from 149 of 164 patients (90%) were classified into MBSHH (47.7%), MBWNT (16.1%), MBGRP3 (15.4%), and MBGRP4 (20.8%). GNAS presented the highest expression levels, with higher expression in MBSHH. TP53, MYCN, SOX2, and MET were also up-regulated in MBSHH, whereas PTEN was up-regulated in MBGRP4. GNAS, TP53, and PTEN low expression was associated with the unfavorable patient outcome only for MBSHH (P = 0.04, P = 0.01, and P = 0.02, respectively). TP53 mutations were detected in 28.57% of MBSHH cases and exhibited association with lower expression and worse clinical outcome, although not statistically significant. The 22-gene panel for molecular classification of medulloblastoma associated with the expression of GNAS, TP53, and PTEN improves the patient prognostication in MBSHH subgroup and can be easily incorporated in the 22-gene panel without any additional costs.


Subject(s)
Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Hedgehog Proteins/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , PTEN Phosphohydrolase/genetics , Transcriptome , Tumor Suppressor Protein p53/genetics , Adolescent , Brazil/epidemiology , Cerebellar Neoplasms/epidemiology , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis/methods , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Male , Medulloblastoma/epidemiology , Mutation , Prognosis , Young Adult
5.
Mol Oncol ; 14(1): 159-179, 2020 01.
Article in English | MEDLINE | ID: mdl-31701625

ABSTRACT

The p90 ribosomal S6 kinase (RSK) family, a downstream target of Ras/extracellular signal-regulated kinase signaling, can mediate cross-talk with the mammalian target of rapamycin complex 1 pathway. As RSK connects two oncogenic pathways in gliomas, we investigated the protein levels of the RSK isoforms RSK1-4 in nontumoral brain (NB) and grade I-IV gliomas. When compared to NB or low-grade gliomas (LGG), a group of glioblastomas (GBMs) that excluded long-survivor cases expressed higher levels of RSK1 (RSK1hi ). No difference was observed in RSK2 median-expression levels among NB and gliomas; however, high levels of RSK2 in GBM (RSK2hi ) were associated with worse survival. RSK4 expression was not detected in any brain tissues, whereas RSK3 expression was very low, with GBM demonstrating the lowest RSK3 protein levels. RSK1hi and, to a lesser extent, RSK2hi GBMs showed higher levels of phosphorylated RSK, which reveals RSK activation. Transcriptome analysis indicated that most RSK1hi GBMs belonged to the mesenchymal subtype, and RSK1 expression strongly correlated with gene expression signature of immune infiltrates, in particular of activated natural killer cells and M2 macrophages. In an independent cohort, we confirmed that RSK1hi GBMs exclude long survivors, and RSK1 expression was associated with high protein levels of the mesenchymal subtype marker lysosomal protein transmembrane 5, as well as with high expression of CD68, which indicated the presence of infiltrating immune cells. An RSK1 signature was obtained based on differentially expressed mRNAs and validated in public glioma datasets. Enrichment of RSK1 signature followed glioma progression, recapitulating RSK1 protein expression, and was associated with worse survival not only in GBM but also in LGG. In conclusion, both RSK1 and RSK2 associate with glioma malignity, but displaying isoform-specific peculiarities. The progression-dependent expression and association with immune infiltration suggest RSK1 as a potential progression marker and therapeutic target for gliomas.


Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Membrane Proteins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Transcriptome/immunology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/immunology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/genetics , Glioma/immunology , Glioma/secondary , Humans , Immunohistochemistry , Killer Cells, Natural/metabolism , Macrophages/metabolism , Membrane Proteins/genetics , Neoplasm Grading , Phosphorylation , Protein Isoforms , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
6.
J Neuropathol Exp Neurol ; 78(9): 788-790, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31403685

ABSTRACT

Medulloblastoma is the most frequent malignant brain tumor in children, representing 20% of all childhood brain tumors. Currently, medulloblastomas are molecularly classified in 4 subgroups that are associated with distinctive clinicopathological features. KBTBD4 mutations were recently described in a subset of MBGRP3 and MBGRP4 medulloblastomas subgroups. However, no other studies reported KBTBD4 mutations in medulloblastomas. Thus, our aim was to investigate KBTBD4 mutations in a Brazilian series of medulloblastoma. We evaluated 128 medulloblastoma patients molecularly classified from 4 Brazilian reference centers. DNA from formalin-fixed, paraffin-embedded samples was screened for KBTBD4 hotspot mutations by Sanger sequencing. Most of the patients were male, average age was 16.5 years old and average overall survival was 55.9 months. The predominant histological subtype was the classic subtype, followed by nodular/desmoplastic, and the predominant medulloblastoma molecular subtype was the MBSHH subgroup (46%), followed by MBGRP3 and MBGRP4 (19%/each), and MBWNT (16%). Among the 128 samples, 111 were successfully sequenced. No KBTBD4 mutations were identified in 111 samples. Our findings suggest that KBTBD4 mutations are uncommon in Brazilian MBGRP3 and MBGRP4 medulloblastomas subgroups. Further studies in a larger series of MBGRP3 and MBGRP4 medulloblastomas are warranted to better assess role of KBTBD4 mutations.


Subject(s)
Carrier Proteins/genetics , Cerebellar Neoplasms/genetics , Medulloblastoma/genetics , Adolescent , Adult , Brazil , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Female , Humans , Male , Medulloblastoma/mortality , Medulloblastoma/pathology , Middle Aged , Mutation , Survival Rate , Young Adult
7.
Appl. cancer res ; 39: 1-5, 2019. ilus, tab
Article in English | LILACS, Inca | ID: biblio-1015230

ABSTRACT

Background: Human biological material has become an important resource for biomedical research. Tumor Biobanks are facilities that collect, store and distribute samples of tumor and normal tissue for further use in basic and translational cancer research. mRNA-translation has been demonstrated to modulate protein levels and is considered a fundamental post-transcriptional mechanism of gene expression regulation. Thus, determining translation efficiencies of individual mRNAs in human tumors may add another layer of information that contributes to the understanding of tumorigenic pathways. To analyze the RNAs actively engaged in translation, RNAs associated with ribosomes (polysomes) are isolated, identified and compared to total RNA. However, the application of this technique in human tumors depends on the stability of the polysomal structure under Biobank storage conditions that usually consists of ultra-low temperature. Since the effect of freezing on the stability of the polysomal structure in stored tumor samples is not known, it is essential to evaluate this factor in the frozen samples, validating the use of biobank samples in studies of translational efficiency. Methods: Xenograft tumors were divided in two parts, half was subject to immediate processing, and half was frozen for posterior analysis. Both parts were subject to polysomal separation, RNA extraction and identification through RNAseq. Results: It was possible to successfully extract and identify total and polysomal RNA from both fresh and frozen tumoral tissue. The quantification of the polysome profile indicated no difference in the translational efficiency estimated in fresh versus frozen tissue. Gene expression data from the fresh versus frozen tissues were compared and the correlation between the polysome associated fresh x frozen (R = 0,89) and total fresh x frozen (0,90) mRNAs was calculated. No difference was identified between the two conditions. Conclusions: We demonstrated that tissue freezing does not affect the polysomal structure, consequently validating the viability of the use of biobank stored tissue for polysome associated RNA analysis (AU)


Subject(s)
Humans , Polyribosomes , RNA , Gene Expression , Gene Expression Regulation , Neoplasms
8.
Nucleic Acids Res ; 46(1): e3, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29069469

ABSTRACT

Polysome-profiling is commonly used to study translatomes and applies laborious extraction of efficiently translated mRNA (associated with >3 ribosomes) from a large volume across many fractions. This property makes polysome-profiling inconvenient for larger experimental designs or samples with low RNA amounts. To address this, we optimized a non-linear sucrose gradient which reproducibly enriches for efficiently translated mRNA in only one or two fractions, thereby reducing sample handling 5-10-fold. The technique generates polysome-associated RNA with a quality reflecting the starting material and, when coupled with smart-seq2 single-cell RNA sequencing, translatomes in small tissues from biobanks can be obtained. Translatomes acquired using optimized non-linear gradients resemble those obtained with the standard approach employing linear gradients. Polysome-profiling using optimized non-linear gradients in serum starved HCT-116 cells with or without p53 showed that p53 status associates with changes in mRNA abundance and translational efficiency leading to changes in protein levels. Moreover, p53 status also induced translational buffering whereby changes in mRNA levels are buffered at the level of mRNA translation. Thus, here we present a polysome-profiling technique applicable to large study designs, primary cells and frozen tissue samples such as those collected in biobanks.


Subject(s)
Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , Ribosomes/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , HCT116 Cells , Humans , MCF-7 Cells , Mutation , RNA, Messenger/metabolism , Sequence Analysis, RNA , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Biochem J ; 474(17): 2981-2991, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28739602

ABSTRACT

Prion protein (PrPC) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrPC in the response to insulin and obesity development. Two independent PrPC knockout (KO) and one PrPC overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrPC KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrPC KO mice and increased in TG20 animals. PrPC KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrPC reflects susceptibility to the development of insulin resistance and metabolic syndrome.


Subject(s)
Glucose Transporter Type 4/metabolism , Insulin Resistance , Obesity/metabolism , PPAR gamma/metabolism , PrPC Proteins/metabolism , Prion Proteins/metabolism , 3T3-L1 Cells , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Cells, Cultured , Crosses, Genetic , Diet, High-Fat/adverse effects , Embryo, Mammalian/pathology , Female , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/etiology , Obesity/pathology , PPAR gamma/genetics , PrPC Proteins/genetics , Prion Proteins/genetics , Protein Transport , Weight Gain
10.
Autophagy ; 12(11): 2113-2128, 2016 11.
Article in English | MEDLINE | ID: mdl-27629560

ABSTRACT

Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered. Here, we demonstrate that primary cultures of astrocytes and fibroblasts from prnp-null mice secreted lower levels of exosomes than wild-type cells. Furthermore, prnp-null astrocytes exhibited reduced MVB formation and increased autophagosome formation. The reconstitution of PRNP expression at the cell membrane restored exosome secretion in PRNP-deficient astrocytes, whereas macroautophagy/autophagy inhibition via BECN1 depletion reestablished exosome release in these cells. Moreover, the PRNP octapeptide repeat domain was necessary to promote exosome secretion and to impair the formation of the CAV1-dependent ATG12-ATG5 cytoplasmic complex that drives autophagosome formation. Accordingly, higher levels of CAV1 were found in lipid raft domains instead of in the cytoplasm in prnp-null cells. Collectively, these findings demonstrate that PRNP supports CAV1-suppressed autophagy to protect MVBs from sequestration into phagophores, thus facilitating exosome secretion.


Subject(s)
Autophagy , Caveolin 1/metabolism , Exosomes/metabolism , Prion Proteins/metabolism , Animals , Astrocytes/metabolism , Exosomes/ultrastructure , Lysosomes/metabolism , Membrane Microdomains/metabolism , Mice, Inbred C57BL , Models, Biological , Multivesicular Bodies/metabolism , Multivesicular Bodies/ultrastructure , Prion Proteins/chemistry , Protein Domains , Repetitive Sequences, Nucleic Acid , Structure-Activity Relationship
11.
Cell Signal ; 27(8): 1630-42, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25889895

ABSTRACT

The 90 kDa ribosomal S6 kinases (RSK) are effectors of the Ras-ERK1/2 signaling pathway. RSK signaling controls proliferation and protein synthesis, and is altered in several types of tumors. BI-D1870 and SL0101 are two widely used inhibitors of RSK. After revision of the literature, discrepancies in the effects of the inhibitors were identified. Herein we report that while SL0101 inhibited mTORC1-p70S6K signaling, BI-D1870 increased p70S6K activation. Both effects were independent of ERK1/2 and RSK, and thus nonspecific. We also demonstrated how these opposite nonspecific effects mislead the identification of the RSK-dependent phosphorylation of rpS6 (S235/236), a known RSK and p70S6K substrate. Phosphorylation of tuberin at S1798 by RSK was proposed to mediate ERK1/2-dependent activation of mTORC1-p70S6K signaling. In glioblastoma-derived cells, phosphorylation of tuberin was abolished after RSK depletion or ERK1/2 inhibition, suggesting that RSK is its main kinase. However, RSK depletion did not reduce PMA-dependent p70S6K phosphorylation, which suggests that tuberin phosphorylation at S1798 is not the main mediator of ERK1/2-dependent activation of mTORC1. Remarkably, tuberin phosphorylation (S1798) followed the activation status of RSK in different cells and experimental conditions, suggesting that phosphorylation of that residue could be used as readout for RSK activation in cells. We confirmed the difference in the effects of SL0101 and BI-D1870 in cellular proliferation assays. Rapamycin potentiated the inhibition of proliferation induced by BI-D1870, but not by SL0101. We thus conclude that SL0101 and BI-D1870 induce distinct off-target effects in mTORC1-p70S6K signaling, and thus, the functions previously ascribed to RSK based on these inhibitors should be reassessed.


Subject(s)
Benzopyrans/pharmacology , Monosaccharides/pharmacology , Multiprotein Complexes/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pteridines/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Data Mining , Dose-Response Relationship, Drug , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/metabolism , Phosphorylation , RNA Interference , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Substrate Specificity , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins
12.
J Neurosci ; 33(42): 16552-64, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24133259

ABSTRACT

In Alzheimer's disease (AD), soluble amyloid-ß oligomers (AßOs) trigger neurotoxic signaling, at least partially, via the cellular prion protein (PrP(C)). However, it is unknown whether other ligands of PrP(C) can regulate this potentially toxic interaction. Stress-inducible phosphoprotein 1 (STI1), an Hsp90 cochaperone secreted by astrocytes, binds to PrP(C) in the vicinity of the AßO binding site to protect neurons against toxic stimuli. Here, we investigated a potential role of STI1 in AßO toxicity. We confirmed the specific binding of AßOs and STI1 to the PrP and showed that STI1 efficiently inhibited AßO binding to PrP in vitro (IC50 of ∼70 nm) and also decreased AßO binding to cultured mouse primary hippocampal neurons. Treatment with STI1 prevented AßO-induced synaptic loss and neuronal death in mouse cultured neurons and long-term potentiation inhibition in mouse hippocampal slices. Interestingly, STI1-haploinsufficient neurons were more sensitive to AßO-induced cell death and could be rescued by treatment with recombinant STI1. Noteworthy, both AßO binding to PrP(C) and PrP(C)-dependent AßO toxicity were inhibited by TPR2A, the PrP(C)-interacting domain of STI1. Additionally, PrP(C)-STI1 engagement activated α7 nicotinic acetylcholine receptors, which participated in neuroprotection against AßO-induced toxicity. We found an age-dependent upregulation of cortical STI1 in the APPswe/PS1dE9 mouse model of AD and in the brains of AD-affected individuals, suggesting a compensatory response. Our findings reveal a previously unrecognized role of the PrP(C) ligand STI1 in protecting neurons in AD and suggest a novel pathway that may help to offset AßO-induced toxicity.


Subject(s)
Amyloid beta-Peptides/metabolism , Heat-Shock Proteins/metabolism , Neurons/metabolism , PrPC Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Astrocytes/metabolism , Brain/metabolism , Cells, Cultured , Hippocampus/metabolism , Mice , Protein Binding , Signal Transduction/physiology , alpha7 Nicotinic Acetylcholine Receptor/metabolism
13.
FASEB J ; 27(9): 3594-607, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23729591

ABSTRACT

Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase-3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1-mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild-type astrocytes by 3-fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia-mediated neuronal death in a prion protein-dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.


Subject(s)
Embryo, Mammalian/metabolism , Heat-Shock Proteins/metabolism , Ischemia/metabolism , Molecular Chaperones/metabolism , Prions/metabolism , Animals , Blastocyst/metabolism , Blotting, Western , CDX2 Transcription Factor , Cells, Cultured , Female , Heat-Shock Proteins/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Vitro Techniques , Ischemia/genetics , Mice , Mice, Mutant Strains , Molecular Chaperones/genetics , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pregnancy , Prions/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Cell Mol Life Sci ; 70(17): 3211-27, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23543276

ABSTRACT

The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling.


Subject(s)
Carrier Proteins/metabolism , Heat-Shock Proteins/metabolism , Secretory Vesicles/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Hippocampus/cytology , Immunoblotting , Mice , PrPC Proteins/metabolism , Secretory Vesicles/ultrastructure
15.
J Biol Chem ; 288(15): 10860-9, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23447528

ABSTRACT

The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Nerve Tissue Proteins/physiology , Neurites/metabolism , Neurogenesis/physiology , Protein Biosynthesis/physiology , Protein Serine-Threonine Kinases/metabolism , Proteins/metabolism , Activating Transcription Factor 4/biosynthesis , Activating Transcription Factor 4/genetics , Animals , Behavior, Animal/physiology , Cells, Cultured , Down-Regulation/physiology , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Feeding Behavior/physiology , Intracellular Signaling Peptides and Proteins , Memory/physiology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism , Synapses/genetics , Synapses/metabolism
16.
J Histochem Cytochem ; 61(4): 272-82, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23340270

ABSTRACT

Tissue microarray technology enables us to evaluate the pattern of protein expression in large numbers of samples. However, manual data acquisition and analysis still represent a challenge because they are subjective and time-consuming. Automated analysis may thus increase the speed and reproducibility of evaluation. However, the reliability of automated analysis systems should be independently evaluated. Herein, the expression of phosphorylated AKT and mTOR was determined by ScanScope XT (Aperio; Vista, CA) and ACIS III (Dako; Glostrup, Denmark) and compared with the manual analysis by two observers. The percentage of labeled pixels or nuclei analysis had a good correlation between human observers and automated systems (κ = 0.855 and 0.879 for ScanScope vs. observers and κ = 0.765 and 0.793 for ACIS III vs. observers). The intensity of labeling determined by ScanScope was also correlated with that found by the human observers (correlation index of 0.946 and 0.851 for pAKT and 0.851 and 0.875 for pmTOR). However, the correlation between ACIS III and human observation varied for labeling intensity and was considered poor in some cases (correlation index of 0.718 and 0.680 for pAKT and 0.223 and 0.225 for pmTOR). Thus, the percentage of positive pixels or nuclei determination was satisfactorily performed by both systems; however, labeling intensity was better identified by ScanScope XT.


Subject(s)
Automation , Proto-Oncogene Proteins c-akt/analysis , TOR Serine-Threonine Kinases/analysis , Tissue Array Analysis , Humans , Immunohistochemistry , Phosphorylation , Proto-Oncogene Proteins c-akt/biosynthesis , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/biosynthesis , TOR Serine-Threonine Kinases/metabolism
17.
J Neurochem ; 124(2): 210-23, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23145988

ABSTRACT

Prion protein (PrP(C)) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrP(C) interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrP(C) co-opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross-talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrP(C)-mediated axonogenesis in peripheral neurons in response to STI1 and laminin-γ1 chain-derived peptide (Ln-γ1). STI1 and Ln-γ1 promoted robust axonogenesis in wild-type neurons, whereas no effect was observed in neurons from PrP(C) -null mice. PrP(C) binding to Ln-γ1 or STI1 led to an increase in intracellular Ca(2+) levels via distinct mechanisms: STI1 promoted extracellular Ca(2+) influx, and Ln-γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln-γ1, but depends on, C-type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrP(C)-mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrP(C). These results suggest a role for PrP(C) as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.


Subject(s)
Calcium Signaling/physiology , Ganglia, Spinal/physiology , Heat-Shock Proteins/physiology , Laminin/physiology , PrPC Proteins/physiology , Receptor Cross-Talk/physiology , Sensory Receptor Cells/physiology , Animals , Axons/chemistry , Axons/physiology , Cell Survival/physiology , Extracellular Fluid/chemistry , Extracellular Fluid/physiology , Ganglia, Spinal/chemistry , Heat-Shock Proteins/chemistry , Intracellular Fluid/chemistry , Intracellular Fluid/metabolism , Laminin/metabolism , Mice , Mice, Knockout , Primary Cell Culture , Protein Binding/physiology , Sensory Receptor Cells/chemistry , Up-Regulation/physiology
18.
J Neurochem ; 117(3): 538-53, 2011 May.
Article in English | MEDLINE | ID: mdl-21352228

ABSTRACT

In Alzheimer's disease, the amyloid-ß peptide (Aß) interacts with distinct proteins at the cell surface to interfere with synaptic communication. Recent data have implicated the prion protein (PrP(C)) as a putative receptor for Aß. We show here that Aß oligomers signal in cells in a PrP(C)-dependent manner, as might be expected if Aß oligomers use PrP(C) as a receptor. Immunofluorescence, flow cytometry and cell surface protein biotinylation experiments indicated that treatment with Aß oligomers, but not monomers, increased the localization of PrP(C) at the cell surface in cell lines. These results were reproduced in hippocampal neuronal cultures by labeling cell surface PrP(C). In order to understand possible mechanisms involved with this effect of Aß oligomers, we used live cell confocal and total internal reflection microscopy in cell lines. Aß oligomers inhibited the constitutive endocytosis of PrP(C), but we also found that after Aß oligomer-treatment PrP(C) formed more clusters at the cell surface, suggesting the possibility of multiple effects of Aß oligomers. Our experiments show for the first time that Aß oligomers signal in a PrP(C)-dependent way and that they can affect PrP(C) trafficking, increasing its localization at the cell surface.


Subject(s)
Amyloid beta-Peptides/pharmacology , Cell Membrane/metabolism , Neurons/drug effects , Peptide Fragments/pharmacology , PrPC Proteins/metabolism , Analysis of Variance , Animals , Biotinylation/methods , Cell Membrane/drug effects , Cells, Cultured , Embryo, Mammalian , Flow Cytometry/methods , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Humans , Mice , Microscopy, Confocal/methods , Mitogen-Activated Protein Kinase 3/metabolism , Neurons/cytology , Protein Transport/drug effects , Time Factors , Transfection , rab5 GTP-Binding Proteins/metabolism
19.
FASEB J ; 25(1): 265-79, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20876210

ABSTRACT

The prion protein (PrP(C)) is highly expressed in the nervous system, and its abnormal conformer is associated with prion diseases. PrP(C) is anchored to cell membranes by glycosylphosphatidylinositol, and transmembrane proteins are likely required for PrP(C)-mediated intracellular signaling. Binding of laminin (Ln) to PrP(C) modulates neuronal plasticity and memory. We addressed signaling pathways triggered by PrP(C)-Ln interaction in order to identify transmembrane proteins involved in the transduction of PrP(C)-Ln signals. The Ln γ1-chain peptide, which contains the Ln binding site for PrP(C), induced neuritogenesis through activation of phospholipase C (PLC), Ca(2+) mobilization from intracellular stores, and protein kinase C and extracellular signal-regulated kinase (ERK1/2) activation in primary cultures of neurons from wild-type, but not PrP(C)-null mice. Phage display, coimmunoprecipitation, and colocalization experiments showed that group I metabotropic glutamate receptors (mGluR1/5) associate with PrP(C). Expression of either mGluR1 or mGluR5 in HEK293 cells reconstituted the signaling pathways mediated by PrP(C)-Ln γ1 peptide interaction. Specific inhibitors of these receptors impaired PrP(C)-Ln γ1 peptide-induced signaling and neuritogenesis. These data show that group I mGluRs are involved in the transduction of cellular signals triggered by PrP(C)-Ln, and they support the notion that PrP(C) participates in the assembly of multiprotein complexes with physiological functions on neurons.


Subject(s)
Laminin/metabolism , Neurites/physiology , PrPC Proteins/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/physiology , Animals , Benzoates/pharmacology , Calcium/metabolism , Cells, Cultured , Female , Glycine/analogs & derivatives , Glycine/pharmacology , HEK293 Cells , Humans , Immunoblotting , Laminin/genetics , Laminin/pharmacology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neurites/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , PrPC Proteins/genetics , Protein Binding , Pyridines/pharmacology , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/genetics , Type C Phospholipases/metabolism
20.
Curr Issues Mol Biol ; 12(2): 63-86, 2010.
Article in English | MEDLINE | ID: mdl-19767651

ABSTRACT

PrP(C) is highly expressed in both the central and peripheral nervous systems from early stages of development and in adulthood. Its major conformational change and conversion into an abnormal form (PrP(Sc)) has been associated with the generation of prions, the infectious agent of transmissible spongiform encephalopathies (TSEs). The massive neurodegeneration presented by individuals suffering from these diseases has been associated with the gain of neurotoxic activity of PrP(Sc). On the other hand, major neurodegeneration is also observed in transgenic mice expressing PrP(C) molecules deleted of specific domains, which points to important functional domains within this molecule, and supports the hypothesis that loss-of PrP(C) function may contribute to the pathogenesis of TSEs. Furthermore, a large body of data demonstrates direct or indirect interaction of PrP(C) with extracellular matrix proteins, soluble factors, transmembrane proteins, G-protein coupled receptors and ions channels. The ability of PrP(C) to drive the assembly of multi-component complexes at the cell surface is likely the basis for its neurotrophic functions. These properties indicate that PrP(C) may be relevant for not only the spongiform encephalopathies, but also as an ancillary component of the pathogenesis of other neurodegenerative diseases, and therefore amenable to therapeutic targeting.


Subject(s)
Prions/metabolism , Animals , Humans , Mice , Models, Genetic , PrPC Proteins/genetics , PrPC Proteins/metabolism , PrPSc Proteins/genetics , PrPSc Proteins/metabolism , Prion Diseases/etiology , Prion Diseases/metabolism , Prions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...