Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37788637

ABSTRACT

The availability of an ever-increasing diversity of prokaryotic genomes and metagenomes represents a major opportunity to understand and decipher the mechanisms behind the functional diversification of microbial biosynthetic pathways. However, it remains unclear to what extent a pathway producing a specific molecule from a specific precursor can diversify. In this study, we focus on the biosynthesis of ubiquinone (UQ), a crucial coenzyme that is central to the bioenergetics and to the functioning of a wide variety of enzymes in Eukarya and Pseudomonadota (a subgroup of the formerly named Proteobacteria). UQ biosynthesis involves three hydroxylation reactions on contiguous carbon atoms. We and others have previously shown that these reactions are catalyzed by different sets of UQ-hydroxylases that belong either to the iron-dependent Coq7 family or to the more widespread flavin monooxygenase (FMO) family. Here, we combine an experimental approach with comparative genomics and phylogenetics to reveal how UQ-hydroxylases evolved different selectivities within the constrained framework of the UQ pathway. It is shown that the UQ-FMOs diversified via at least three duplication events associated with two cases of neofunctionalization and one case of subfunctionalization, leading to six subfamilies with distinct hydroxylation selectivity. We also demonstrate multiple transfers of the UbiM enzyme and the convergent evolution of UQ-FMOs toward the same function, which resulted in two independent losses of the Coq7 ancestral enzyme. Diversification of this crucial biosynthetic pathway has therefore occurred via a combination of parallel evolution, gene duplications, transfers, and losses.


Subject(s)
Gene Duplication , Ubiquinone , Ubiquinone/genetics , Ubiquinone/metabolism , Mixed Function Oxygenases/genetics , Iron/metabolism
2.
J Bacteriol ; 203(23): e0040021, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34543102

ABSTRACT

Francisella tularensis is the causative agent of tularemia. Because of its extreme infectivity and high mortality rate, this pathogen was classified as a biothreat agent. Francisella spp. are strict aerobes, and ubiquinone (UQ) has been previously identified in these bacteria. While the UQ biosynthetic pathways were extensively studied in Escherichia coli, allowing the identification of 15 Ubi proteins to date, little is known about Francisella spp. In this study, and using Francisella novicida as a surrogate organism, we first identified ubiquinone 8 (UQ8) as the major quinone found in the membranes of this bacterium. Next, we characterized the UQ biosynthetic pathway in F. novicida using a combination of bioinformatics, genetics, and biochemical approaches. Our analysis disclosed the presence in Francisella of 10 putative Ubi proteins, and we confirmed 8 of them by heterologous complementation in E. coli. The UQ biosynthetic pathways from F. novicida and E. coli share similar patterns. However, differences were highlighted: the decarboxylase remains unidentified in Francisella spp., and homologs of the Ubi proteins involved in the O2-independent UQ pathway are not present. This is in agreement with the strictly aerobic niche of this bacterium. Next, via two approaches, i.e., the use of an inhibitor (3-amino-4-hydroxybenzoic acid) and a transposon mutant, both of which strongly impair the synthesis of UQ, we demonstrated that UQ is essential for the growth of F. novicida in respiratory medium and contributes to its pathogenicity in Galleria mellonella used as an alternative animal model. IMPORTANCE Francisella tularensis is the causative bacterium of tularemia and is classified as a biothreat agent. Using multidisciplinary approaches, we investigated the ubiquinone (UQ) biosynthetic pathway that operates in F. novicida used as a surrogate. We show that UQ8 is the major quinone identified in the membranes of Francisella novicida. We identified a new competitive inhibitor that strongly decreased the biosynthesis of UQ. Our demonstration of the crucial roles of UQ for the respiratory metabolism of F. novicida and for the involvement in its pathogenicity in the Galleria mellonella model should stimulate the search for selective inhibitors of bacterial UQ biosynthesis.


Subject(s)
Francisella/pathogenicity , Ubiquinone/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Bacterial/physiology , Virulence
3.
mBio ; 10(4)2019 07 09.
Article in English | MEDLINE | ID: mdl-31289180

ABSTRACT

Most bacteria can generate ATP by respiratory metabolism, in which electrons are shuttled from reduced substrates to terminal electron acceptors, via quinone molecules like ubiquinone. Dioxygen (O2) is the terminal electron acceptor of aerobic respiration and serves as a co-substrate in the biosynthesis of ubiquinone. Here, we characterize a novel, O2-independent pathway for the biosynthesis of ubiquinone. This pathway relies on three proteins, UbiT (YhbT), UbiU (YhbU), and UbiV (YhbV). UbiT contains an SCP2 lipid-binding domain and is likely an accessory factor of the biosynthetic pathway, while UbiU and UbiV (UbiU-UbiV) are involved in hydroxylation reactions and represent a novel class of O2-independent hydroxylases. We demonstrate that UbiU-UbiV form a heterodimer, wherein each protein binds a 4Fe-4S cluster via conserved cysteines that are essential for activity. The UbiT, -U, and -V proteins are found in alpha-, beta-, and gammaproteobacterial clades, including several human pathogens, supporting the widespread distribution of a previously unrecognized capacity to synthesize ubiquinone in the absence of O2 Together, the O2-dependent and O2-independent ubiquinone biosynthesis pathways contribute to optimizing bacterial metabolism over the entire O2 range.IMPORTANCE In order to colonize environments with large O2 gradients or fluctuating O2 levels, bacteria have developed metabolic responses that remain incompletely understood. Such adaptations have been recently linked to antibiotic resistance, virulence, and the capacity to develop in complex ecosystems like the microbiota. Here, we identify a novel pathway for the biosynthesis of ubiquinone, a molecule with a key role in cellular bioenergetics. We link three uncharacterized genes of Escherichia coli to this pathway and show that the pathway functions independently from O2 In contrast, the long-described pathway for ubiquinone biosynthesis requires O2 as a substrate. In fact, we find that many proteobacteria are equipped with the O2-dependent and O2-independent pathways, supporting that they are able to synthesize ubiquinone over the entire O2 range. Overall, we propose that the novel O2-independent pathway is part of the metabolic plasticity developed by proteobacteria to face various environmental O2 levels.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Oxygen/metabolism , Ubiquinone/biosynthesis , Anaerobiosis , Escherichia coli/genetics
4.
Cell Chem Biol ; 26(4): 482-492.e7, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30686758

ABSTRACT

Ubiquinone (UQ) is a polyprenylated lipid that is conserved from bacteria to humans and is crucial to cellular respiration. How the cell orchestrates the efficient synthesis of UQ, which involves the modification of extremely hydrophobic substrates by multiple sequential enzymes, remains an unresolved issue. Here, we demonstrate that seven Ubi proteins form the Ubi complex, a stable metabolon that catalyzes the last six reactions of the UQ biosynthetic pathway in Escherichia coli. The SCP2 domain of UbiJ forms an extended hydrophobic cavity that binds UQ intermediates inside the 1-MDa Ubi complex. We purify the Ubi complex from cytoplasmic extracts and demonstrate that UQ biosynthesis occurs in this fraction, challenging the current thinking of a membrane-associated biosynthetic process. Collectively, our results document a rare case of stable metabolon and highlight how the supramolecular organization of soluble enzymes allows the modification of hydrophobic substrates in a hydrophilic environment.


Subject(s)
Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipid Metabolism , Ubiquinone/metabolism , Biosynthetic Pathways , Models, Molecular , Terpenes/metabolism
5.
J Biol Chem ; 292(28): 11937-11950, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28559279

ABSTRACT

Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli, and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, yqiC, which is required for efficient UQ biosynthesis, and which we have renamed ubiK Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified. We found that both proteins are likely to contribute to global UQ biosynthesis rather than to a specific biosynthetic step, because both ubiK and ubiJ mutants accumulated octaprenylphenol, an early intermediate of the UQ biosynthetic pathway. Interestingly, we found that both proteins are dispensable for UQ biosynthesis under anaerobiosis, even though they were expressed in the absence of oxygen. We also provide evidence that the UbiK-UbiJ complex interacts with palmitoleic acid, a major lipid in E. coli Last, in Salmonella enterica, ubiK was required for proliferation in macrophages and virulence in mice. We conclude that although the role of the UbiK-UbiJ complex remains unknown, our results support the hypothesis that UbiK is an accessory factor of Ubi enzymes and facilitates UQ biosynthesis by acting as an assembly factor, a targeting factor, or both.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Macrophages/microbiology , Models, Molecular , Salmonella enterica/metabolism , Ubiquinone/biosynthesis , Animals , BALB 3T3 Cells , Bacterial Load , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Fatty Acids, Monounsaturated/metabolism , Female , Gene Deletion , Humans , Intracellular Signaling Peptides and Proteins , Macrophages/immunology , Mice , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Multimerization , RAW 264.7 Cells , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Salmonella Infections/microbiology , Salmonella enterica/growth & development , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , Spleen/microbiology , Terminology as Topic , Virulence
6.
Biochim Biophys Acta ; 1847(8): 739-47, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25976528

ABSTRACT

Quinones are essential building blocks of respiration, a universal process dedicated to efficient harvesting of environmental energy and its conversion into a transmembrane chemiosmotic potential. Quinones differentiate mostly by their midpoint redox potential. As such, γ-proteobacteria such as Escherichia coli are characterized by the presence of demethylmenaquinone (DMK) with an intermediate redox potential between low-potential (menaquinone) and high-potential (ubiquinone) quinones. In this study, we show that demethylmenaquinol (DMKH2) is a good substrate for nitrate reductase A (NarGHI) in nitrate respiration in E. coli. Kinetic studies performed with quinol analogs on NarGHI show that removal of the methyl group on the naphthoquinol ring impacts modestly the catalytic constant but not the KM. EPR-monitored redox titrations of NarGHI-enriched membrane vesicles reveal that endogeneous demethylmenasemiquinone (DMSK) intermediates are stabilized in the enzyme. The measured midpoint potential of the DMK/DMKH2 redox couple in NarGHI (E'm,7.5 (DMK/DMKH2) ~-70mV) is significantly lower than that previously measured for unbound species. High resolution pulsed EPR experiments demonstrate that DMSK are formed within the NarGHI quinol oxidation site. Overall, our results provide the first characterization of a protein-bound DMSK and allows for comparison for distinct use of three quinones at a single Q-site in NarGHI.


Subject(s)
Escherichia coli/enzymology , Hydroquinones/chemistry , Nitrate Reductase/metabolism , Nitrates/metabolism , Vitamin K 2/analogs & derivatives , Benzoquinones/metabolism , Cell Respiration , Electron Spin Resonance Spectroscopy , Hydroquinones/metabolism , Kinetics , Naphthols/chemistry , Oxidation-Reduction , Vitamin K 2/chemistry , Vitamin K 2/metabolism
7.
J Bacteriol ; 196(1): 70-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24142253

ABSTRACT

Ubiquinone (coenzyme Q or Q8) is a redox active lipid which functions in the respiratory electron transport chain and plays a crucial role in energy-generating processes. In both Escherichia coli and Salmonella enterica serovar Typhimurium, the yigP gene is located between ubiE and ubiB, all three being likely to constitute an operon. In this work, we showed that the uncharacterized yigP gene was involved in Q8 biosynthesis in both strains, and we have renamed it ubiJ. Under aerobic conditions, an ubiJ mutant was found to be impaired for Q8 biosynthesis and for growth in rich medium but did not present any defect anaerobically. Surprisingly, the C-terminal 50 amino acids, predicted to interact with lipids, were sufficient to restore Q8 biosynthesis and growth of the ubiJ mutant. Salmonella ubiE and ubiB mutants were impaired in Q8 biosynthesis and in respiration using different electron acceptors. Moreover, ubiE, ubiJ, and ubiB mutants were all impaired for Salmonella intracellular proliferation in macrophages. Taken together, our data establish an important role for UbiJ in Q8 biosynthesis and reveal an unexpected link between Q8 and virulence. They also emphasize that Salmonella organisms in an intracellular lifestyle rely on aerobic respiration to survive and proliferate within macrophages.


Subject(s)
Biosynthetic Pathways/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Genes, Bacterial/genetics , Macrophages/microbiology , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Ubiquinone/biosynthesis , Aerobiosis , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Mutational Analysis , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Salmonella typhimurium/genetics , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
8.
J Biol Chem ; 288(27): 20085-92, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23709220

ABSTRACT

Coenzyme Q (ubiquinone or Q) is a redox-active lipid found in organisms ranging from bacteria to mammals in which it plays a crucial role in energy-generating processes. Q biosynthesis is a complex pathway that involves multiple proteins. In this work, we show that the uncharacterized conserved visC gene is involved in Q biosynthesis in Escherichia coli, and we have renamed it ubiI. Based on genetic and biochemical experiments, we establish that the UbiI protein functions in the C5-hydroxylation reaction. A strain deficient in ubiI has a low level of Q and accumulates a compound derived from the Q biosynthetic pathway, which we purified and characterized. We also demonstrate that UbiI is only implicated in aerobic Q biosynthesis and that an alternative enzyme catalyzes the C5-hydroxylation reaction in the absence of oxygen. We have solved the crystal structure of a truncated form of UbiI. This structure shares many features with the canonical FAD-dependent para-hydroxybenzoate hydroxylase and represents the first structural characterization of a monooxygenase involved in Q biosynthesis. Site-directed mutagenesis confirms that residues of the flavin binding pocket of UbiI are important for activity. With our identification of UbiI, the three monooxygenases necessary for aerobic Q biosynthesis in E. coli are known.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Flavin-Adenine Dinucleotide/metabolism , Hydrolases/metabolism , Mixed Function Oxygenases/metabolism , Ubiquinone/biosynthesis , Aerobiosis/physiology , Binding Sites/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Flavin-Adenine Dinucleotide/genetics , Hydrolases/genetics , Hydroxylation/physiology , Mixed Function Oxygenases/genetics , Mutagenesis, Site-Directed , Ubiquinone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL