Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 36(4): 928-937, 2018 03.
Article in English | MEDLINE | ID: mdl-28271723

ABSTRACT

Nanoparticles (NPs) are one of the interesting and widely studying issues mainly because of their particular physico-chemical features and broad applications in the field of biomedical sciences, such as diagnosis and drug delivery. In this study, the interaction of iron nanoparticles (Fe-NPs) with Tau protein and PC12 cell, as potential nervous system models, was investigated with a range of techniques including dynamic light scattering, intrinsic fluorescence spectroscopy, circular dichroism, [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromid] assay, and acridine orange/ethidium bromide (AO/EB) dual staining method. An inverse correlation between Stern and Volmer constant (KSV) and temperature indicated a probable static quenching mechanism occurred between Tau protein and Fe-NPs. The number of binding site (n = 0.86) showed that there is almost one binding site of Fe-NP per protein. The negative values of ∆H (-53.21 kJ/mol) and T∆S (-42.44 kJ/mol) revealed that Fe-NPs interacts with Tau protein with dominate role of hydrogen bonds and van der Waals interactions and this interaction was spontaneous (∆G = -10.77 kJ/mol). Also, Fe-NPs stabilized the random coil structure of Tau protein. Moreover, Fe-NPs reduced PC12 cells viability by fragmentation of DNA in an apoptotic manner. In conclusion, induced conformational changes of Tau protein and cytotoxicity of PC12 cells by Fe-NP were revealed to be in a concentration and time-dependent manner.


Subject(s)
Iron/pharmacology , Metal Nanoparticles/chemistry , Protein Conformation/drug effects , tau Proteins/chemistry , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Circular Dichroism , DNA/drug effects , Dynamic Light Scattering , Hydrogen Bonding/drug effects , Iron/chemistry , Molecular Docking Simulation , Nervous System/drug effects , PC12 Cells , Rats , Thermodynamics , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...