Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Anim Sci J ; 93(1): e13677, 2021.
Article in English | MEDLINE | ID: mdl-35029000

ABSTRACT

This study investigated the intracellular mechanism governing the effects of oleuropein (OLE), a phenolic compound of Olea europaea, on mRNA expression of avian uncoupling protein (avUCP) and mitochondrial biogenesis-related factors, and reactive oxygen species (mitROS) generation in a primary cultured chicken muscle cells. The OLE-treated cells exhibited increases in Avucp and ATP5a1z expression and a decrease in mitROS generation (p < 0.05), while the effects was canceled by sirtuin-1 (SIRT1) or transient receptor potential vanilloid 1 (TRPV1) inhibitors, EX-527 or BCTC, respectively. Intracellular Ca2+ concentration was significantly increased by OLE, while the induction was canceled by BCTC. The study also found that TRPV1 was expressed in the cell membrane and endoplasmic reticulum (ER), and Ca2+ could be released from ER in the OLE-treated cells. The OLE-treated cells exhibited increases in the phosphorylation ratio of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content. EX-527 and BCTC inhibitors canceled the effects of OLE on p-AMPK ratio and PGC-1α content, while EX-527 SIRT did not change PGC-1α content. The results suggest that the OLE effects may be due to Ca2+ release, possibly from TRPV1 at ER, and increased p-AMPK ratio, followed by SIRT1 activation and PGC-1α protein expression.


Subject(s)
Muscle Cells , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Chickens/metabolism , Iridoid Glucosides , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Reactive Oxygen Species , Sirtuin 1/genetics , Sirtuin 1/metabolism
2.
J Poult Sci ; 57(4): 319-327, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33132733

ABSTRACT

The skeletal muscle growth rate is a major feature differentiating meat- and laying-type chickens. A large amount of ATP is required during skeletal muscle synthesis, in which mitochondrial energy production capacities play a significant role. Additionally, mitochondria may participate in muscle protein degradation via reactive oxygen species generation. To investigate the differences in mitochondrial energetic characteristics between chickens exhibiting different growth rates, this study evaluated respiratory capacities in response to different types of respiratory substrate, protein abundances, assembly of individual respiratory complexes (I-V) and supercomplexes, and reactive oxygen species generation rates. These characteristics were compared between mitochondria from the breast muscle (M. pectoralis superficialis) of seven-week-old meat- and laying-type male chickens. Blue native polyacrylamide gel electrophoresis analysis revealed that meat-type chickens exhibited a significantly lower protein abundance of complex III (cytochrome bc 1 complex), complex V (F0F1 ATP synthase), and total amount of supercomplexes than did laying-type chickens. There were no differences between chicken types in the respiration rate of mitochondria incubated with either pyruvate/malate or succinate, each of which drives complex I- and complex II-linked respiration. Carnitine palmitoyltransferase-1-dependent and -independent respiration during ATP synthesis and carnitine palmitoyltransferase-2 enzymatic activity were significantly lower in meat-type chickens than in layingtype chickens. For mitochondria receiving pyruvate/malate plus succinate, the reactive oxygen species generation rate and its ratio to the oxygen consumed (the percentage of free radical leak) were also significantly lower in meat-type chickens than in laying-type chickens. These results suggested that the mitochondrial energetic capacities of the breast muscle of meat-type chickens could be lower than those of laying-type chickens at seven weeks of age. Furthermore, the lower reactive oxygen species generation rate in meat-type chickens might have implications for rapid muscle development, which is possibly related to their lower muscle protein degradation rates.

3.
J Poult Sci ; 55(3): 210-216, 2018.
Article in English | MEDLINE | ID: mdl-32055177

ABSTRACT

Mitochondrial content is regarded a useful feature to distinguish muscle-fiber types in terms of energy metabolism in skeletal muscles. Increasing evidence suggests that specific mitochondrial bioenergetic phenotypes exist in metabolically different muscle fibers. A few studies have examined the energetic properties of skeletal muscle in domestic fowls; however, no information on muscle bioenergetics in broiler chickens selectively bred for faster growth is available. In this study, we aimed to characterize the mitochondrial contents and functions of chicken skeletal muscle consisting entirely of type I (oxidative) (M. pubo-ischio-femoralis pars medialis), type IIA (glycolytic/oxidative) (M. pubo-ischio-femoralis pars lateralis), and type IIB (glycolytic) (M. pectoralis) muscle fibers. Citrate synthase (CS) activity was the highest in type IIA muscle tissues and isolated mitochondria, among the muscle tissues tested. Although no difference was registered in mitochondrial CS activity between type IIB and type I muscles, tissue CS activity was significantly higher in the latter. Histochemical staining for NADH tetrazolium reductase and the ratio of muscle-tissue to mitochondrial CS activity indicated that type I, type IIA, and type IIB muscle-fiber types showed decreasing mitochondrial content. Mitochondria from type I muscle exhibited a higher coupled respiration rate induced by pyruvate/malate, palmitoyl-CoA/malate, and palmitoyl-carnitine, as respiratory substrates, than type IIB-muscle mitochondria, while the response of mitochondria from type IIA muscle to those substrates was comparable to that of mitochondria from type I muscle. Type IIA-muscle mitochondria exhibited the highest carnitine palmitoyltransferase-2 level among all tissues tested, which may contribute to the higher fatty acid oxidation in these mitochondria. The results suggest that mitochondrial abundance is one of the features differentiating metabolic characteristics of different chicken skeletal muscle types. Moreover, the study demonstrated that type IIA-muscle mitochondria may have distinct metabolic capacities.

SELECTION OF CITATIONS
SEARCH DETAIL
...