Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13710, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607966

ABSTRACT

RNA-binding protein Musashi1 (MSI1) shows an increased expression level in several cancers and has been introduced as a prognostic marker in some malignancies. It is expected that if any miRNA is encoded by this gene, it might have a role in cancer development or could be considered as a prognostic biomarker. Accordingly, in this study, we aimed to find novel miRNA(s) inside the intronic regions of the MSI1 gene. Here, we report two novel miRNAs within intron 4 of MSI1 gene, named MSM2 and MSM3, which were selected among several miRNA precursors predicted by bioinformatic studies. For experimental analysis, corresponding precursor miRNAs were transfected into HEK293T cells and exogenous expression of the mature miRNAs were detected. Two mature miRNAs, MSM3-3p and MSM3-5p were generated by MSM3 precursor and one, MSM2-5p was derived from MSM2. Besides, endogenous expression of MSM2-5p and MSM3-3p was detected in MCF-7 and SH-SY5Y cell lines. Expression of both mature miRNAs was also detected in clinical samples of breast cancer. Additionally, the interaction between the MSM3-3p and 3'UTR region of PDE11A was confirmed by dual luciferase assay. Overall, our data demonstrated that MSI1 gene encodes two novel miRNAs in breast cancer cells.


Subject(s)
Breast Neoplasms , MicroRNAs , Neuroblastoma , Humans , Female , MicroRNAs/genetics , Breast Neoplasms/genetics , HEK293 Cells , Oncogenes , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics
2.
Res Pharm Sci ; 15(1): 48-56, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32180816

ABSTRACT

BACKGROUND AND PURPOSE: Breast cancer (BC) is one of the major causes of female cancer-related death. It has recently been demonstrated that metabolic reprogramming including alteration in lipid metabolism is indicated in various types of cancer. The enzymes of the acyl-coenzyme A synthetase long-chain family (ACSLs) are responsible for converting fatty acids to their corresponding fatty acyl-coenzyme A esters which are essential for some lipid metabolism pathways. ACSL4 is one of the isoforms of ACSLs and has a marked preference for arachidonic and eicosapentaenoic acids. The objective of this study was to evaluate ACSL4 expression, its prognostic significance, and its correlation with p53 tumor suppressor in BC patients. EXPERIMENTAL APPROACH: In this study 55 pairs of fresh samples of BC and adjacent non-cancerous tissue were used to analyze ACSL4 expression, using real-time polymerase chain reaction and immunohistochemistry (IHC) staining. The expression of other studied variables was also examined using the IHC technique. FINDINGS / RESULTS: ACSL4 expression was significantly higher in BC tissues compared to the adjacent normal tissue. This upregulation was negatively correlated with Ki-67 and age, and positively correlated with p53 status. The correlation between ACSL4 and p53 may indicate the role of p53 in the regulation of lipid metabolism in cancer cells, in addition to its role in the regulation of ferroptosis cell death. CONCLUSION AND IMPLICATIONS: Our results indicated that the expression of ACSL4 may be considered as a prognostic indicator and potential therapeutic target in BC. However, further studies are needed to confirm the significance of these findings.

3.
J Cell Physiol ; 235(7-8): 5835-5846, 2020 07.
Article in English | MEDLINE | ID: mdl-31970786

ABSTRACT

Breast cancer (BC) is an important cause of female cancer-related death. It has recently been demonstrated that metabolic disorders including lipid metabolism are a hallmark of cancer cells. Lipin-1 is an enzyme that displays phosphatidate phosphatase activity and regulates the rate-limiting step in the pathway of triglycerides and phospholipids synthesis. The objective of this study was to evaluate lipin-1 expression, its prognostic significance, and its correlation with p53 tumor suppressor in patients with BC. In this study, 55 pairs of fresh samples of BC and adjacent noncancerous tissue were used to analyze lipin-1, using quantitative real-time polymerase chain reaction and immunohistochemistry (IHC) staining. The expression of other clinicopathological variables and p53 was also examined using IHC technique. The cell migration was studied in MCF-7 and MDA-MB231 cells following the inhibition of lipin-1 by propranolol. Our results show that the relative expression of lipin-1 messenger RNA was significantly higher in BC tissues compared with the adjacent normal tissue and its inhibition reduced cell migration in cancer cells. This upregulation was negatively correlated with histological grade of tumor and p53 status (p = .001 and p = .034) respectively and positively correlated with the tumor size (p = .006). Our results also seem to indicate that the high lipin-1 expression is related to a good prognosis in patients with BC. The expression of lipin-1 may be considered as a novel independent prognostic factor. The inhibition of lipin-1 may also have therapeutic significance for patients with BC. The correlation between lipin-1 and p53 confirms the role of p53 in the regulation of lipid metabolism in cancer cells.


Subject(s)
Breast Neoplasms/genetics , Cell Proliferation/genetics , Phosphatidate Phosphatase/genetics , Tumor Suppressor Protein p53/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Cell Movement/genetics , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lipid Metabolism/genetics , Lipogenesis/genetics , Middle Aged , Prognosis , Triglycerides/metabolism
4.
Appl Biochem Biotechnol ; 187(3): 975-983, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30109561

ABSTRACT

One of the most common somatic mutations in breast cancer is found in PIK3CA with a prevalence rate of 18-45%. Different variants of this gene are considered as resistance markers for treatment with HER2-targeted medicines. Conventional molecular methods such as Sanger sequencing are not able to detect mutations with low abundance in a mixture of wild-type DNA, especially in the early stages of cancer development. In this study, two methods of co-amplification at lower denaturation temperature PCR (COLD-PCR) and high-resolution melting (HRM) were combined for detection of mutations in exon 9 of PIK3CA; DNA, therefore, was extracted from MCF-7 and BT-474 as mutant and wild-type cell lines respectively. Thereafter, serial dilutions of extracted DNA were used to determine sensitivity of full-COLD PCR/HRM in comparison with conventional PCR sequencing as the gold standard method. Cell line experiments resulted in almost 30 fold increase in sensitivity by use of full-COLD PCR/HRM. In addition, 40 patients with primary breast cancer were investigated with the mentioned methods. As a result of this part of study, four mutations were detected by conventional PCR sequencing including E542K and E545K mutations in three and one samples respectively. Whereas, full-COLD PCR/HRM was able to detect one E542K mutation more than gold standard method which caused the percentage of sensitivity to get improved by 2.5% (10 to 12.5%). Our results clearly demonstrated that full-COLD PCR/HRM could detect lower levels of mutations in wild-type background as a sensitive method with simple and cost-effective procedure; therefore, it can prospectively be used in screening of patients with early-stage breast cancers.


Subject(s)
Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Mutational Analysis/methods , Exons/genetics , Mutation , Polymerase Chain Reaction/methods , Transition Temperature , Humans , MCF-7 Cells , Nucleic Acid Denaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...