Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(8)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38132548

ABSTRACT

Combined Heat and Power Units Economic Dispatch (CHPUED) is a challenging non-convex optimization challenge in the power system that aims at decreasing the production cost by scheduling the heat and power generation outputs to dedicated units. In this article, a Kepler optimization algorithm (KOA) is designed and employed to handle the CHPUED issue under valve points impacts in large-scale systems. The proposed KOA is used to forecast the position and motion of planets at any given time based on Kepler's principles of planetary motion. The large 48-unit, 96-unit, and 192-unit systems are considered in this study to manifest the superiority of the developed KOA, which reduces the fuel costs to 116,650.0870 USD/h, 234,285.2584 USD/h, and 487,145.2000 USD/h, respectively. Moreover, the dwarf mongoose optimization algorithm (DMOA), the energy valley optimizer (EVO), gray wolf optimization (GWO), and particle swarm optimization (PSO) are studied in this article in a comparative manner with the KOA when considering the 192-unit test system. For this large-scale system, the presented KOA successfully achieves improvements of 19.43%, 17.49%, 39.19%, and 62.83% compared to the DMOA, the EVO, GWO, and PSO, respectively. Furthermore, a feasibility study is conducted for the 192-unit test system, which demonstrates the superiority and robustness of the proposed KOA in obtaining all operating points between the boundaries without any violations.

2.
Biomimetics (Basel) ; 8(6)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37887621

ABSTRACT

Correct modelling and estimation of solar cell characteristics are crucial for effective performance simulations of PV panels, necessitating the development of creative approaches to improve solar energy conversion. When handling this complex problem, traditional optimisation algorithms have significant disadvantages, including a predisposition to get trapped in certain local optima. This paper develops the Mantis Search Algorithm (MSA), which draws inspiration from the unique foraging behaviours and sexual cannibalism of praying mantises. The suggested MSA includes three stages of optimisation: prey pursuit, prey assault, and sexual cannibalism. It is created for the R.TC France PV cell and the Ultra 85-P PV panel related to Shell PowerMax for calculating PV parameters and examining six case studies utilising the one-diode model (1DM), two-diode model (1DM), and three-diode model (3DM). Its performance is assessed in contrast to recently developed optimisers of the neural network optimisation algorithm (NNA), dwarf mongoose optimisation (DMO), and zebra optimisation algorithm (ZOA). In light of the adopted MSA approach, simulation findings improve the electrical characteristics of solar power systems. The developed MSA methodology improves the 1DM, 2DM, and 3DM by 12.4%, 44.05%, and 48.88%, 28.96%, 43.19%, and 55.81%, 37.71%, 32.71%, and 60.13% relative to the DMO, NNA, and ZOA approaches, respectively. For the Ultra 85-P PV panel, the designed MSA technique achieves improvements for the 1DM, 2DM, and 3DM of 62.05%, 67.14%, and 84.25%, 49.05%, 53.57%, and 74.95%, 37.03%, 37.4%, and 59.57% compared to the DMO, NNA, and ZOA techniques, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...