Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 191(12): 734, 2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31707592

ABSTRACT

The quality of drinking water source remains as a major concern in areas of developing and underdeveloped countries worldwide. The treatment and supply of drinking water in Rwanda are carried out by Water and Sanitation Corporation, a state-owned public company. However, it is not able to supply water to all households. Consequently, the non-serviced households depend on natural water sources, like springs, to meet their water requirements. Nevertheless, the water quality in these springs is scarcely known. Therefore, this study assessed and compared metal elements in drinking water sources in the dry and rainy seasons in 2017 using the contamination degree, metal index, and geographic information systems to reveal the spatial distribution of water quality within the considered water sources of springs in Rwanda. The samples were collected monthly from nine water sources of springs and the measured elements are aluminium, calcium, copper, iron, manganese, and zinc. The metal index indicated that during the dry season and rainy season, the sites of Kibungo (1.10 and 1.26) and Kinigi (1.01 and 1.54) have assessed a metal index which is higher than 1. Thus, the water quality of those sites was getting the threshold of warning. The analysis indicated that pollutants are easily transported into water bodies during the rainy season in urban and rural areas to a greater extent than during the dry season .


Subject(s)
Drinking Water/analysis , Environmental Monitoring , Geographic Information Systems , Water Pollutants, Chemical/analysis , Water Supply/statistics & numerical data , Cadmium/analysis , Copper/analysis , Iron/analysis , Metals/analysis , Organic Chemicals/analysis , Rain , Rwanda , Seasons , Water Pollutants, Chemical/standards , Water Quality , Zinc/analysis
2.
Risk Anal ; 39(11): 2576-2595, 2019 11.
Article in English | MEDLINE | ID: mdl-31291492

ABSTRACT

The use of appropriate approaches to produce risk maps is critical in landslide disaster management. The aim of this study was to investigate and compare the stability index mapping (SINMAP) and the spatial multicriteria evaluation (SMCE) models for landslide risk modeling in Rwanda. The SINMAP used the digital elevation model in conjunction with physical soil parameters to determine the factor of safety. The SMCE method used six layers of landslide conditioning factors. In total, 155 past landslide locations were used for training and model validation. The results showed that the SMCE performed better than the SINMAP model. Thus, the receiver operating characteristic and three statistical estimators-accuracy, precision, and the root mean square error (RMSE)-were used to validate and compare the predictive capabilities of the two models. Therefore, the area under the curve (AUC) values were 0.883 and 0.798, respectively, for the SMCE and SINMAP. In addition, the SMCE model produced the highest accuracy and precision values of 0.770 and 0.734, respectively. For the RMSE values, the SMCE produced better prediction than SINMAP (0.332 and 0.398, respectively). The overall comparison of results confirmed that both SINMAP and SMCE models are promising approaches for landslide risk prediction in central-east Africa.

SELECTION OF CITATIONS
SEARCH DETAIL
...