Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-8, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646834

ABSTRACT

Two novel aromatic polyketides 1 and 3 and five known compounds, (4S,10S)-talaroflavone (2), altenuene (4), isoaltenuene (5), alternariol (6), and altenusin (7), were isolated from an endophytic strain of Alternaria alternata SI-694. The structures of the new compounds, including their absolute configurations, were elucidated by NMR, IR, UV, and ECD spectroscopies, and the phytotoxicities of the isolated compounds were also evaluated. Altenusin (7) showed moderate cytotoxicity against HL-60 cells, with an IC50 of 6.65 µM, whereas 5, 6, and 7 were phytotoxic against Lactuca sativa, Brassica campestris L., Stellaria aquatica (L.) Scop. and Digitaria ciliaris.

2.
Biosci Biotechnol Biochem ; 87(9): 972-980, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37279446

ABSTRACT

Inflammation, characterized by the overexpression of IL-6 in various tissues, has been reported as a symptom of coronavirus disease 2019. In this study, we established an experimental system for overexpression of IL-6 in HeLa cells stimulated by TNF-α and IL-17, along with identification of anti-inflammatory materials and components from local agricultural, forestry, and fishery resources. We constructed a library of extracts from natural sources, of which 111 samples were evaluated for their anti-inflammatory activities. The MeOH extract of Golden Berry (Physalis peruviana L) leaf was found to exhibit strong anti-inflammatory properties (IC50 = 4.97 µg/mL). Preparative chromatography identified two active constituents, 4ß-hydroxywithanolide E (4ß-HWE) (IC50 = 183 nM) and withanolide E (WE) (IC50 = 65.1 nM). Withanolides are known anti-inflammatory ingredients of Withania somnifera, an Ayurvedic herbal medicine. P. peruviana leaves containing 4ß-HWE and WE should be considered as useful natural resources for anti-inflammatory products.


Subject(s)
COVID-19 , Physalis , Plant Extracts , Plant Leaves , Withanolides , Humans , HeLa Cells , Interleukin-17 , Interleukin-6/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha , Withanolides/pharmacology , Withanolides/analysis , Withanolides/chemistry , Physalis/chemistry , Plant Leaves/chemistry
3.
Biosci Biotechnol Biochem ; 86(10): 1462-1466, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-35867866

ABSTRACT

Cacalia delphiniifolia and Cacalia hastata are edible wild plants in Japan. We found that these plants have anti-melanogenic activity in B16F10 mouse melanoma cells. Three furanoeremophilanes, cacalol (from C. delphiniifolia), dehydrocacalohastin, and cacalohastin (from C. hastata), were identified as the main active components. The genus Cacalia may be a good source of beneficial materials with anti-melanogenic effects.


Subject(s)
Asteraceae , Melanoma, Experimental , Sesquiterpenes, Eudesmane , Animals , Cell Line, Tumor , Japan , Melanins , Mice , Monophenol Monooxygenase , Plants, Edible
4.
Fitoterapia ; 158: 105157, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35176422

ABSTRACT

Three new sesquiterpene phenol dimers, bidysoxyphenols A-C (2-4), along with two known compounds, namely sesquiterpene phenol (1) and ionone derivatives (5), were isolated from the leaves of Dysoxylum parasiticum (Osbeck) Kosterm. The structures of these new compounds, including their absolute configurations, were elucidated by nuclear magnetic resonance spectroscopy, ultraviolet spectroscopy, infrared spectroscopy, high-resolution electrospray ionization time-of-flight mass spectrometry, and electronic circular dichroism. Compounds 1 and 2 showed cytotoxicity against human promyelocytic leukemia cells, with IC50 values of 18.25 ± 1.52 and 39.04 ± 3.12 µM, respectively.


Subject(s)
Meliaceae , Sesquiterpenes , Humans , Meliaceae/chemistry , Molecular Structure , Phenols/analysis , Plant Leaves/chemistry , Sesquiterpenes/chemistry
5.
Fitoterapia ; 157: 105130, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35051554

ABSTRACT

Petasites japonicus is one of the most popular edible wild plants in Japan. Many biological effects of P. japonicus have been reported, including anti-allergy, anti-inflammation, and anticancer effects. Although its anti-obesity effect has been reported in several studies, the most important component responsible for this activity has not been fully elucidated. On screening the components that suppress adipocyte differentiation in 3T3-F442A cells, we found that the extract of the flower buds of P. japonicus has anti-adipogenic effect. Among the known major components of P. japonicus, petasin exhibited a potent anti-adipogenic effect at an IC50 value of 0.95 µM. Quantitative analysis revealed that the active component responsible for most of the anti-adipogenic effects of P. japonicus extract is petasin. Petasin suppressed the expression of markers of mature adipocytes (PPARγ, C/EBPα, and aP2). However, as isopetasin and petasol, analogs of petasin, did not exhibit these effects, it indicates that a double bond at the C11-C12 position and an angeloyl ester moiety were essential for the activity. Petasin affected the late stage of adipocyte differentiation and inhibited the expression of lipid synthesis factors (ACC1, FAS, and SCD1). Additionally, it was revealed that petasin could be efficiently extracted using hexane with minimal amount of pyrrolizidine alkaloids, the toxic components. These findings indicate that P. japonicus extract containing petasin could be a promising food material for the prevention of obesity.


Subject(s)
Adiposity/drug effects , Obesity/prevention & control , Petasites/chemistry , Sesquiterpenes/pharmacology , 3T3 Cells/drug effects , Adipogenesis/drug effects , Animals , Azo Compounds , Blotting, Western , Coloring Agents , Flowers/chemistry , Inhibitory Concentration 50 , Japan , Mice , Polyphenols/analysis , Pyrrolizidine Alkaloids/chemistry , Real-Time Polymerase Chain Reaction , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Structure-Activity Relationship
6.
Biosci Biotechnol Biochem ; 85(10): 2153-2160, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34251393

ABSTRACT

Ca2+ signaling is related to various diseases such as allergies, diabetes, and cancer. We explored Ca2+ signaling inhibitors in natural resources using a yeast-based screening method and found bakkenolide B from the flower buds of edible wild plant, Petasites japonicus, using the YNS17 strain (zds1Δ erg3Δ pdr1/3Δ). Bakkenolide B exhibited growth-restoring activity against the YNS17 strain and induced Li+ sensitivity of wild-type yeast cells, suggesting that it inhibits the calcineurin pathway. Additionally, bakkenolide B inhibited interleukin-2 production at gene and protein levels in Jurkat cells, a human T cell line, but not the in vitro phosphatase activity of human recombinant calcineurin, an upstream regulator of interleukin-2 production. Furthermore, bakkenolide A showed weak activity in YNS17 and Jurkat cells compared with bakkenolide B. These findings revealed new biological effects and the structure-activity relationships of bakkenolides contained in P. japonicus as inhibitors of interleukin-2 production in human T cells.


Subject(s)
Saccharomyces cerevisiae , Sesquiterpenes
7.
Sci Rep ; 10(1): 20592, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244101

ABSTRACT

North Pacific krill (Euphausia pacifica) contain 8R-hydroxy-eicosapentaenoic acid (8R-HEPE), 8R-hydroxy-eicosatetraenoic acid (8R-HETE) and 10R-hydroxy-docosahexaenoic acid (10R-HDHA). These findings indicate that E. pacifica must possess an R type lipoxygenase, although no such enzyme has been identified in krill. We analyzed E. pacifica cDNA sequence using next generation sequencing and identified two lipoxygenase genes (PK-LOX1 and 2). PK-LOX1 and PK-LOX2 encode proteins of 691 and 686 amino acids, respectively. Recombinant PK-LOX1 was generated in Sf9 cells using a baculovirus expression system. PK-LOX1 metabolizes eicosapentaenoic acid (EPA) to 8R-HEPE, arachidonic acid (ARA) to 8R-HETE and docosahexaenoic acid (DHA) to 10R-HDHA. Moreover, PK-LOX1 had higher activity for EPA than ARA and DHA. In addition, PK-LOX1 also metabolizes 17S-HDHA to 10R,17S-dihydroxy-docosahexaenoic acid (10R,17S-DiHDHA). PK-LOX1 is a novel lipoxygenase that acts as an 8R-lipoxygenase for EPA and 10R-lipoxygenase for DHA and 17S-HDHA. Our findings show PK-LOX1 facilitates the enzymatic production of hydroxy fatty acids, which are of value to the healthcare sector.


Subject(s)
Arthropod Proteins/metabolism , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Euphausiacea/enzymology , Lipoxygenase/metabolism , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Euphausiacea/chemistry , Euphausiacea/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Lipoxygenase/chemistry
8.
J Lipid Res ; 60(9): 1491-1502, 2019 09.
Article in English | MEDLINE | ID: mdl-31345992

ABSTRACT

Fatty acids have various physiological effects on melanoma. For example, palmitic acid (PA) increases melanin levels; linoleic acid and DHA decrease melanin levels; and DHA suppresses tumor growth. In this study, we focused on the relationship between the structure of fatty acids and their physiological effects in melanoma to examine the likely mechanisms of action. We showed that saturated fatty acids and PUFAs display opposing effects on melanin content in melanoma cells. Likewise, PA and EPA have opposing effects in terms of actin polymerization. Our findings suggest that PA and EPA change melanin content in melanoma to alter melanosome trafficking by modulating actin polymerization. Here, we also examined the mechanism of the anti-tumor effect of DHA. We found that DHA interacts with receptor for activated C kinase 1 and represses melanoma cell proliferation by suppressing protein kinase C signaling. Our results suggest a new mechanism to explain the physiological effects of fatty acids.


Subject(s)
Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fatty Acids/pharmacology , Melanoma/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Dihydroxyphenylalanine/metabolism , Humans , Melanins/metabolism , Mice , Signal Transduction/drug effects
9.
Zoolog Sci ; 36(3): 182-188, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31251486

ABSTRACT

Balanus rostratus is a large cold-water acorn barnacle distributed around the northern coast of the Pacific Ocean. In Mutsu Bay, Aomori, Japan, B. rostratus, which adhere naturally to scallop shells, are cultured as food. However, current culture methods do not generate sufficient supplies to satisfy market demand. Knowledge of the physiology of B. rostratus reproduction is important for the development of more efficient aquaculture methods. Previous studies have suggested that fatty acids and their metabolites play an important role in barnacle reproduction and development; however, few studies have analyzed lipids, particularly during ovary maturation. Here we analyzed lipid content, lipid class, and fatty acid composition of B. rostratus ovary throughout the year. The clutch in the present study was observed once per year at the end of November. The lipid content increased as the ovary underwent maturation. The proportion of triacylglycerol increased with increasing lipid content. The proportions of myristic acid, arachidonic acid, EPA and DHA significantly decreased in December. By contrast, the proportion of these fatty acids in lipid extracted from larvae was high relative to lipid extracted from B. rostratus ovary in December. These findings suggest that these fatty acids are transferred from the ovary to the larvae. Our novel findings on lipid metabolism during ovary maturation in B. rostratus indicate the importance of lipids during reproduction. This information may be useful in establishing methods for the aquaculture of B. rostratus.


Subject(s)
Lipid Metabolism/physiology , Thoracica/physiology , Animals , Aquaculture/standards , Female , Ovary/growth & development , Reproduction
10.
Fitoterapia ; 134: 422-428, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30858047

ABSTRACT

Two kinds of biologically active compounds were isolated from the MeOH extract of the Early Cretaceous Burmese amber [99 million years ago (Ma)], which is older than the K-Pg boundary (65 Ma). These compounds had inhibitory activity against the hypersensitive mutant yeast strain (zds1∆ erg3∆ pdr1∆ pdr3∆) with respect to Ca2+ signal transduction. They were identified as 16,17-bisnordehydroabietic acid (1) and 16,17-bisnorcallitrisic acid (2), respectively, on the basis of spectral analyses including HREIMS, 1D, and 2D NMR. Both have faint growth restoring activities around the clear inhibition zone against the mutant yeast on the 0.31-0.16 µg/spot. This is the first report of direct structural elucidation of 1 and 2 and the biologically active compounds derived from Burmese amber.


Subject(s)
Amber/pharmacology , Calcium Signaling/drug effects , Saccharomyces cerevisiae/drug effects , Amber/chemistry , Molecular Structure , Myanmar
11.
Sci Rep ; 7(1): 9944, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855640

ABSTRACT

Euphausia pacifica is a good candidate for a resource of marine n-3 PUFA. However, few reports exist of the lipid and fatty acid composition of E. pacifica. To examine the potential of E. pacifica as a resource of marine n-3 PUFA, we analyzed E. pacifica oil. We extracted lipids from E. pacifica harvested from the Pacific Ocean near Sanriku, Japan. Lipid classes of E. pacifica oil were analyzed by TLC-FID and the fatty acid composition of the oil was analyzed by GC/MS. Free fatty acids and hydroxy-fatty acids were analyzed by LC/QTOFMS. The lipid content of E. pacifica ranged from 1.30% to 3.57%. The ratios of triacylglycerols, phosphatidylcholine, phosphatidylethanolamine and free fatty acids in E. pacifica lipids were 5.3-23.0%, 32.6-53.4%, 8.5-25.4% and 2.5-7.0%, respectively. The content of n-3 PUFA in E. pacifica lipids was 38.6-46.5%. We also showed that E. pacifica contains unusual fatty acids and derivatives: C16-PUFAs (9,12-hexadecadienoic acid, 6,9,12-hexadecatrienoic acid and 6,9,12,15-hexadecatetraenoic acid) and hydroxy-PUFAs (8-HETE and 10-HDoHE). E. pacifica is a good resource of marine n-3 PUFA. Moreover, E. pacifica can provide C16-PUFA and hydroxy-PUFAs.


Subject(s)
Euphausiacea/chemistry , Lipids/analysis , Animals , Chromatography, Liquid , Chromatography, Thin Layer , Flame Ionization , Japan , Lipids/isolation & purification , Mass Spectrometry , Pacific Ocean
12.
Nutrients ; 9(9)2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28892009

ABSTRACT

5-hydroxyeicosatetraenoic acid (5-HETE) and 5-hydroxyeicosapentaenoic acid (5-HEPE) are major metabolites produced by 5-lipoxygenase (5-LOX) from arachidonic acid (AA) and eicosapentaenoic acid (EPA). Effects of hydroxides on endothelial cells are unclear, although 5-LOX is known to increase at arteriosclerotic lesions. To investigate the effects of hydroxides on human umbilical vein endothelial cells (HUVECs), the cells were treated with 50 µM each of AA, EPA, 5-HETE, and 5-HEPE. Treatment of HUVECs with 5-HETE and 5-HEPE, rather than with AA and EPA, increased the nuclear translocation of NF-E2 related factor 2 (Nrf2) and upregulated the expression of heme oxygenase-1 and cystine/glutamate transporter regulated by Nrf2. Reactive oxygen species (ROS) generation was markedly elevated in HUVECs after treatment with 5-HETE and 5-HEPE, and the pretreatment with α-tocopherol abrogated ROS levels similar to those in the vehicle control. However, ROS generation was independent of Nrf2 activation induced by 5-HETE and 5-HEPE. 5-HETE was converted to 5-oxo-eicosatetraenoic acid (5-oxo-ETE) in HUVECs, and 5-oxo-ETE increased Nrf2 activation. These results suggest that 5-HETE works as an Nrf2 activator through the metabolite 5-oxo-ETE in HUVECs. Similarly, 5-HEPE works in the same way, because 5-HEPE is metabolized to 5-oxo-eicosapentaenoic acid through the same pathway as that for 5-HETE.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , NF-E2-Related Factor 2/metabolism , Arachidonic Acid/metabolism , Cells, Cultured , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Heme Oxygenase-1/metabolism , Humans , Hydroxyeicosatetraenoic Acids/pharmacology , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species/metabolism , alpha-Tocopherol/pharmacology
13.
J Lipids ; 2016: 7498508, 2016.
Article in English | MEDLINE | ID: mdl-27239345

ABSTRACT

PPARs regulate the expression of genes involved in lipid homeostasis. PPARs serve as molecular sensors of fatty acids, and their activation can act against obesity and metabolic syndromes. 8-Hydroxyeicosapentaenoic acid (8-HEPE) acts as a PPAR ligand and has higher activity than EPA. However, to date, the PPAR ligand activity of 8-HEPE has only been demonstrated in vitro. Here, we investigated its ligand activity in vivo by examining the effect of 8-HEPE treatment on high fat diet-induced obesity in mice. After the 4-week treatment period, the levels of plasma and hepatic triglycerides in the 8-HEPE-fed mice were significantly lower than those in the HFD-fed mice. The expression of genes regulated by PPARα was significantly increased in 8-HEPE-fed mice compared to those that received only HFD. Additionally, the level of hepatic palmitic acid in 8-HEPE-fed mice was significantly lower than in HFD-fed mice. These results suggested that intake of 8-HEPE induced PPARα activation and increased catabolism of lipids in the liver. We found no significant differences between EPA-fed mice and HFD-fed mice. We demonstrated that 8-HEPE has a larger positive effect on metabolic syndrome than EPA and that 8-HEPE acts by inducing PPARα activation in the liver.

14.
J Lipid Res ; 55(5): 895-904, 2014 May.
Article in English | MEDLINE | ID: mdl-24668940

ABSTRACT

PPARs regulate the expression of genes for energy metabolism in a ligand-dependent manner. PPARs can influence fatty acid oxidation, the level of circulating triglycerides, glucose uptake and insulin sensitivity. Here, we demonstrate that 5-hydroxyeicosapentaenoic acid (HEPE), 8-HEPE, 9-HEPE, 12-HEPE and 18-HEPE (hydroxylation products of EPA) obtained from methanol extracts of Pacific krill (Euphausia pacifica) can act as PPAR ligands. Two of these products, 8-HEPE and 9-HEPE, enhanced the transcription levels of GAL4-PPARs to a significantly greater extent than 5-HEPE, 12-HEPE, 18-HEPE, EPA, and EPA ethyl-ester. 8-HEPE also activated significantly higher transcription of GAL4-PPARα, GAL4-PPARγ, and GAL4-PPARδ than EPA at concentrations greater than 4, 64, and 64 µM, respectively. We also demonstrated that 8-HEPE increased the expression levels of genes regulated by PPARs in FaO, 3T3-F442A, and C2C12 cells. Furthermore, 8-HEPE enhanced adipogenesis and glucose uptake. By contrast, at the same concentrations, EPA showed weak or little effect, indicating that 8-HEPE was the more potent inducer of physiological effects.


Subject(s)
Eicosapentaenoic Acid/metabolism , Euphausiacea/chemistry , Peroxisome Proliferator-Activated Receptors/metabolism , Adipogenesis/drug effects , Angiopoietin-Like Protein 4 , Angiopoietins/genetics , Animals , Biological Transport/drug effects , Cell Line , Eicosapentaenoic Acid/pharmacology , Fatty Acids/metabolism , Glucose/metabolism , Humans , Ligands , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisomes/drug effects , Peroxisomes/metabolism , Transcriptional Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...