Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339308

ABSTRACT

Fibrous carbon nanotubes (CNTs) and lamellar graphene oxide (GO) exhibit significant advantages for improving the fatigue properties of rubber composites. In this work, the synergistic effect of CNTs and GO on the modification of the microstructure and fatigue properties of natural rubber (NR) was comprehensively investigated. Results showed that CNTs and GO were interspersed, and they formed a strong filler network in the NR matrix. Compared with those of CNT/NR and GO/NR composites, the CNT-GO/NR composites showed the smallest crack precursor sizes, the lowest crack growth rates, more branching and deflections, and the longest fatigue life.

2.
Polymers (Basel) ; 11(10)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614744

ABSTRACT

The aim of this paper was the detailed investigation of the properties of one-shot bulk polymerized thermoplastic polyurethanes (TPUs) produced with different processing temperatures and the properties of thermoplastic dynamic vulcanizates (TDVs) made by utilizing such in situ synthetized TPUs as their matrix polymer. We combined TPUs and conventional crosslinked rubbers in order to create TDVs by dynamic vulcanization in an internal mixer. The rubber phase was based on three different rubber types: acrylonitrile butadiene rubber (NBR), carboxylated acrylonitrile butadiene rubber (XNBR), and epoxidized natural rubber (ENR). Our goal was to investigate the effect of different processing conditions and material combinations on the properties of the resulting TDVs with the opportunity of improving the interfacial connection between the two phases by chemically bonding the crosslinked rubber phase to the TPU matrix. Therefore, the matrix TPU was synthesized in situ during compounding from diisocyanate, diol, and polyol in parallel with the dynamic vulcanization of the rubber mixture. The mechanical properties were examined by tensile and dynamical mechanical analysis (DMTA) tests. The morphology of the resulting TDVs was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and the thermal properties by differential scanning calorimetry (DSC). Based on these results, the initial temperature of 125 °C is the most suitable for the production of TDVs. Based on the atomic force micrographs, it can be assumed that phase separation occurred in the TPU matrix and we managed to evenly distribute the rubber phase in the TDVs. However, based on the SEM images, these dispersed rubber particles tended to agglomerate and form a quasi-continuous secondary phase where rubber particles were held together by secondary forces (dipole-dipole and hydrogen bonding) and can be broken up reversibly by heat and/or shear. In terms of mechanical properties, the TDVs we produced are on a par with commercially available TDVs with similar hardness.

3.
Polymers (Basel) ; 10(7)2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30960692

ABSTRACT

Because of the chemically crosslinked 3D molecular structure of rubbers, their recycling is a challenging task, especially when cost efficiency is also considered. One of the most straightforward procedures is the grinding of discarded rubber products with subsequent devulcanization. The devulcanized rubber can be used as a feedstock for fresh rubber compounds or can be blended with uncured virgin rubber and thermoplastic polymers to form thermoplastic dynamic vulcanizates (TDVs). TDVs combine the beneficial (re)processability of thermoplastics and the elastic properties of rubbers. Our current work focuses on the development of polypropylene (PP)-based TDVs with the use of a tire model rubber (MR) composed of natural rubber (NR) and styrene-butadiene rubber (SBR) in a ratio of 70/30. The research target was the partial substitution of the above fresh MR by microwave devulcanized crumb rubber (dCR). TDVs were produced by continuous extrusion, and the effects of composition (PP/MR/dCR = 40/60/0…50/35/15) and processing parameters (different screw configurations, temperature profiles, the feeding method of PP) were investigated. Results showed that the fresh rubber compound can be replaced up to 10 wt % without compromising the mechanical properties of the resulting TDV.

4.
Materials (Basel) ; 9(9)2016 Aug 24.
Article in English | MEDLINE | ID: mdl-28773841

ABSTRACT

In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...