Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 356: 141699, 2024 May.
Article in English | MEDLINE | ID: mdl-38554874

ABSTRACT

Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (µg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (µg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Pharmaceutical Preparations/analysis
2.
Sci Total Environ ; 925: 171116, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38382596

ABSTRACT

Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.


Subject(s)
Environmental Pollutants , Plastics , Humans , Animals , Biodegradation, Environmental , Insecta
3.
Conserv Biol ; 37(2): e13994, 2023 04.
Article in English | MEDLINE | ID: mdl-36047704

ABSTRACT

Europe has a long history of human pressure on freshwater ecosystems. As pressure continues to grow and new threats emerge, there is an urgent need for conservation of freshwater biodiversity and its ecosystem services. However, whilst some taxonomic groups, mainly vertebrates, have received a disproportionate amount of attention and funds, other groups remain largely off the public and scientific radar. Freshwater mussels (Bivalvia, Unionida) are an alarming example of this conservation bias and here we point out six conceptual areas that need immediate and long-term attention: knowledge, threats, socioeconomics, conservation, governance and education. The proposed roadmap aims to advance research, policy and education by identifying the most pressing priorities for the short- and long-term conservation of freshwater mussels across Europe.


Subject(s)
Bivalvia , Ecosystem , Animals , Humans , Conservation of Natural Resources , Biodiversity , Fresh Water , Europe
4.
Glob Chang Biol ; 27(11): 2298-2314, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33739622

ABSTRACT

Anthropogenic freshwater habitats may provide undervalued prospects for long-term conservation as part of species conservation planning. This fundamental, but overlooked, issue requires attention considering the pace that humans have been altering natural freshwater ecosystems and the accelerated levels of biodiversity decline in recent decades. We compiled 709 records of freshwater mussels (Bivalvia, Unionida) inhabiting a broad variety of anthropogenic habitat types (from small ponds to large reservoirs and canals) and reviewed their importance as refuges for this faunal group. Most records came from Europe and North America, with a clear dominance of canals and reservoirs. The dataset covered 228 species, including 34 threatened species on the IUCN Red List. We discuss the conservation importance and provide guidance on how these anthropogenic habitats could be managed to provide optimal conservation value to freshwater mussels. This review also shows that some of these habitats may function as ecological traps owing to conflicting management practices or because they act as a sink for some populations. Therefore, anthropogenic habitats should not be seen as a panacea to resolve conservation problems. More information is necessary to better understand the trade-offs between human use and the conservation of freshwater mussels (and other biota) within anthropogenic habitats, given the low number of quantitative studies and the strong biogeographic knowledge bias that persists.


Subject(s)
Bivalvia , Ecosystem , Animals , Biodiversity , Conservation of Natural Resources , Europe , Fresh Water , Humans , North America
5.
Sci Total Environ ; 757: 143723, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33213901

ABSTRACT

The pandemic of the novel coronavirus disease 2019 (COVID-19) has caused a significant burden to healthcare systems, economic crisis, and public fears. It is also a lesson to be learned and a call-to-action to minimize the risk of future viral pandemics and their associated challenges. The present paper outlines selected measures (i.e., monitoring and identification of novel viral agents in animals, limitations to wildlife trade, decreasing hunting activities, changes to mink farming and meat production), the implementation of which would decrease such a risk. The role of viral surveillance systems and research exploring the virus strains associated with different animal hosts is emphasized along with the need for stricter wild trade regulations and changes to hunting activities. Finally, the paper suggests modifications to the meat production system, particularly through the introduction of cultured meat that would not only decrease the risk of exposure to novel human viral pathogens but also strengthen food security and decrease the environmental impacts of food production.


Subject(s)
COVID-19 , Pandemics , Animals , Disease Outbreaks , Humans , SARS-CoV-2 , Viral Zoonoses , Zoonoses/epidemiology
6.
Naturwissenschaften ; 106(11-12): 60, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31758263

ABSTRACT

Anthropogenic salinisation of freshwater ecosystems is frequent across the world. The scale of this phenomenon remains unrecognised, and therefore, monitoring and management of such ecosystems is very important. We conducted a study on the mollusc communities in inland anthropogenic ponds covering a large gradient of salinity located in an area of underground coal mining activity. A total of 14 gastropod and 6 bivalve species were noted. No molluscs were found in waters with total dissolved solids (TDS) higher than 17.1 g L-1. The share of alien species in the communities was very high in waters with elevated salinity and significantly lower in the freshwaters. Canonical correspondence analysis (CCA) showed that TDS, pH, alkalinity, nitrate nitrogen, ammonium nitrogen, iron, the content of organic matter in sediments, the type of substrate and the content of sand and gravel in sediments were the variables that were significantly associated with the distribution of molluscs. The regression analysis revealed that total mollusc density was positively related to alkalinity and negatively related to nitrate nitrogen. The taxa richness was negatively related to TDS, which is consistent with previous studies which indicated that a high salinity level is a significant threat to freshwater malacofauna, causing a loss of biodiversity and contributing to the colonisation and establishment of alien species in aquatic ecosystems.


Subject(s)
Biodiversity , Environment , Mollusca/physiology , Salinity , Animal Distribution , Animals , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...