Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurosci ; 42(20): 4202-4214, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35437276

ABSTRACT

Acetylcholine (ACh) is thought to control arousal, attention, and learning by slowly modulating cortical excitability and plasticity. Recent studies, however, discovered that cholinergic neurons emit precisely timed signals about the aversive outcome at millisecond precision. To investigate the functional relevance of such phasic cholinergic signaling, we manipulated and monitored cholinergic terminals in the mPFC while male mice associated a neutral conditioned stimulus (CS) with mildly aversive eyelid shock (US) over a short temporal gap. Optogenetic inhibition of cholinergic terminals during the US promoted the formation of the CS-US association. On the contrary, optogenetic excitation of cholinergic terminals during the US blocked the association formation. The bidirectional behavioral effects paralleled the corresponding change in the expression of an activity-regulated gene, c-Fos in the mPFC. In contrast, optogenetic inhibition of cholinergic terminals during the CS impaired associative learning, whereas their excitation had marginal effects. In parallel, photometric recording from cholinergic terminals in the mPFC revealed strong innate phasic responses to the US. With subsequent CS-US pairings, cholinergic terminals weakened the responses to the US while developing strong responses to the CS. The across-session changes in the CS- and US-evoked terminal responses were correlated with associative memory strength. These findings suggest that phasic cholinergic signaling in the mPFC exerts opposite effects on aversive associative learning depending on whether it is emitted by the outcome or the cue.SIGNIFICANCE STATEMENT Drugs compensating for the decline of acetylcholine (ACh) are used for cognitive impairment, such as Alzheimer's disease. However, their beneficial effects are limited, demanding new strategies based on better understandings of how ACh modulates cognition. Here, we report that by manipulating ACh signals in the mPFC, we can control the strength of aversive associative learning in mice. Specifically, the suppression of ACh signals during an aversive outcome facilitated its association with a preceding cue. In contrast, the suppression of ACh signals during the cue impaired learning. Considering that this paradigm depends on the brain regions affected in Alzheimer's disease, our findings indicate that precisely timed control of ACh signals is essential to refine ACh-based strategies for cognitive enhancement.


Subject(s)
Acetylcholine , Alzheimer Disease , Acetylcholine/metabolism , Animals , Cholinergic Agents/pharmacology , Conditioning, Classical/physiology , Learning/physiology , Male , Mice , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...