Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 145: 107157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340473

ABSTRACT

A new panel of N-sulfonylpiperidine derivatives has been designed and synthesized as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. Anti-proliferative activities of the synthesized members were tested against colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), and breast cancer (MCF-7) cell lines. Compounds 3a, 4, 8, and 9 showed the highest activities against the tested cell lines. In particular, compound 8 showed excellent activities against HCT-116, HepG-2, and MCF-7 with IC50 values of 3.94, 3.76, and 4.43 µM, respectively. Such IC50 values are comparable to vinblastine (IC50 = 3.21, 7.35, 5.83 µM, respectively) and doxorubicin (IC50 = 6.74, 7.52, 8.19 µM, respectively). In vitro VEGFR-2 inhibitory activity of the most promising molecules (3a, 4, 8, and 9) indicated that compound 8 is the highest VEGFR-2 inhibitor with an IC50 of 0.0554 µM, compared to sorafenib (IC50 = 0.0416 µM). The most promising candidates (3a, 4, 8, and 9) were subjected to flow cytometry analyses to assess their effects on the cell cycle behavior and the apoptotic power against the three tested cell lines (HCT-116, HepG-2, and MCF-7). The tested compound arrested the tumor cells at both the G2/M and Pre-G1 phases. In addition, compound 9 was proved as the most effective apoptotic inducer among the tested compounds against the tested cells. Molecular docking studies against VEGFR-2 (PDB ID: 2OH4) revealed good binding modes of the synthesized compound similar to that of sorafenib. Computational investigation of ADMET parameters revealed the drug-likeness of the synthesized compounds.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , Humans , Molecular Docking Simulation , Sorafenib , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , MCF-7 Cells , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology
2.
J Biomol Struct Dyn ; : 1-18, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37661733

ABSTRACT

Microbiological DNA gyrase is recognized as an exceptional microbial target for the innovative development of low-resistant and more effective antimicrobial drugs. Hence, we introduced a one-pot facile synthesis of a novel pyranopyrazole scaffold bearing different functionalities; substituted aryl ring, nitrile, and hydroxyl groups. All new analogs were characterized with full spectroscopic data. The antimicrobial screening for all analogs was assessed against standard strains of Gm + ve and Gm-ve through in vitro considers. The screened compounds displayed very promising MIC/MBC values against some of the bacterial strains with broad or selective antibacterial effects. Of these, 4j biphenyl analog showed 0.5-2/2-8 µg/mL MIC/MBC for suppression and killing of Gm + ve and Gm-ve strains. Moreover, the antimicrobial screening was assessed for the most potent analogs against certain highly resistant microbial strains. Consequently, DNA gyrase supercoiling assay was done for all analogs using ciprofloxacin as reference positive control. Obviously, the results showed a different activity profile with potent analog 4j with IC50 value 6.29 µg/mL better than reference drug 10.2 µg/mL. Additionally, CNS toxicity testing was done using the HiB5 cell line for attenuation of GABA/NMDA expression to both 4j and ciprofloxacin compounds that revealed better neurotransmitter modulation by novel scaffold. Importantly, docking and dynamic simulations were performed for the most active 4j analog to investigate its interaction with DNA binding sites, which supported the in vitro observations and compound stability with binding pocket. Finally, a novel scaffold pyranopyrazole was introduced as a DNA gyrase inhibitor with prominent antibacterial efficacy and low CNS side effect toxicity better than quinolones.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 41(24): 15243-15261, 2023.
Article in English | MEDLINE | ID: mdl-36914238

ABSTRACT

All the previously reported phenylpyrazoles as carbonic anhydrase inhibitors (CAIs) were found to have small sizes and high levels of flexibility, and hence showed low selectivity profiles toward a particular isoform of CA. Herein, we report the development of a more rigid ring system bearing a sulfonamide hydrophilic head and a lipophilic tail to develop novel molecules that are suggested to have a better selectivity toward a special CA isoform. Accordingly, three novel sets of pyrano[2,3-c]pyrazoles attached with sulfonamide head and aryl hydrophobic tail were synthesized to enhance the selectivity toward a specific isoform of human carbonic anhydrases (hCAs). The impact of both attachments on the potency and selectivity has been extensively discussed in terms of in vitro cytotoxicity evaluation under hypoxic conditions, structure-activity relationship and carbonic anhydrase enzyme assay. All of the new candidates displayed good cytotoxic activities against breast and colorectal carcinomas. Results of the carbonic anhydrase enzyme assay demonstrated the preferential of compounds 22, 24 and 27 to inhibit the isoform IX of hCAs selectively. Wound-healing assay has also been performed and revealed the potential of 27 to decrease the wound closure percentage in MCF-7 cells. Molecular docking and molecular orbital analysis have finally been conducted. Results indicate the potential binding interactions of 24 and 27 with several crucial amino acids of the hCA IX.Communicated by Ramaswamy H. Sarma.


Subject(s)
Carbonic Anhydrases , Humans , Molecular Docking Simulation , Molecular Structure , Carbonic Anhydrase IX/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Protein Isoforms/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry
4.
Bioorg Chem ; 130: 106255, 2023 01.
Article in English | MEDLINE | ID: mdl-36403336

ABSTRACT

COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 µM respectively compared with 12.85 and 82.17 µM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Chlorocebus aethiops , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2 , Vero Cells , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation
5.
Green Chem Lett Rev ; 14(4): 578-599, 2021.
Article in English | MEDLINE | ID: mdl-35821884

ABSTRACT

A metal-free, atom-economy and simple work-up domino amination-Knoevenagel condensation approach to construct new coumarin analogous (4a-f and 8a-e) was described. Further, new formyl (5a,d-f) and nitro (9a,d-f) coumarin derivatives were synthesized via C-N coupling reaction of various cyclic secondary amines and 4-chloro-3-(formyl-/nitro)coumarins (1a,c), respectively. The confirmed compounds were screened for their in vitro anti-proliferative activity against KB-3-1, A549 and PC3 human cancer cell lines using resazurin cellular-based assay. Among them, coumarin derivatives 4e and 8e displayed the best anti-cervical cancer potency (KB-3-1) with IC50 values of 15.5 ± 3.54 and 21 ± 4.24 µM, respectively. Also, 4e showed the most promising cytotoxicity toward A549 with IC50 value of 12.94 ± 1.51 µM. As well, 9d presented a more significant impact of potency against PC3 with IC50 7.31 ± 0.48 µM. Moreover, 8d manifested selectivity against PC3 (IC50 = 20.16 ± 0.07 µM), while 8e was selective toward KB-3-1 cell line (IC50 = 21 ± 4.24 µM). Matching with docking profile, the enzymatic assay divulged that 8e is a dual potent single-digit nanomolar inhibitor of VEGFR-2 and EGFR with IC50 values of 24.67 nM and 31.6 nM that were almost equipotent to sorafenib (31.08 nM) and erlotinib (26.79 nM), respectively.

6.
Bioorg Chem ; 105: 104387, 2020 12.
Article in English | MEDLINE | ID: mdl-33130344

ABSTRACT

7H-Benzo[7,8]chromeno[2,3-d]pyrimidin-9(8H)-amine (6a,b) have been synthesized via hydrazinolysis of the imidates (5a,b). Polysubstituted chromenotriazolopyrimidine (7a-j), (12a,b) and Schiff base (8a,b) derivatives have also been prepared. The new heterocyclic derivatives were affirmed by spectral data. The target compounds have been screened for antibacterial and antifungal activity. Compounds 6a,b and 7a-c, g,h displayed the most favorable antimicrobial activities in resemblance to the reference antimicrobial agents by IZ range over 24 mm. In addition, MIC, MBC and MFC were also tested and screen for most active compound 6a by 6.25 µg/mL showing bactericidal effect. SAR study revealed that the antimicrobial vitality of the target compounds was safely influenced by the lipophilicity substituents and the calculated log P value. The potent compounds were subjected into in vitro enzyme screening (14α-Demethylase and DNA Gyrase) against both interesting targets and showed good inhibitory profile. Molecular modeling analyses were introduced and discussed focusing on the docking of active compounds into two essential targets, and their ADMET properties were studied.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Benzopyrans/pharmacology , Topoisomerase II Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemical synthesis , 14-alpha Demethylase Inhibitors/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus/drug effects , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Candida albicans/drug effects , DNA Gyrase/metabolism , Dose-Response Relationship, Drug , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
7.
Bioorg Chem ; 98: 103725, 2020 05.
Article in English | MEDLINE | ID: mdl-32199303

ABSTRACT

A series of heterocyclic compounds with a sulfonamide moiety were synthesized from reaction of enaminone 4 with active methylene compounds, glycine derivatives, 1,4-benzoquinone, hydroxylamine hydrochloride, hydrazonyl halides and dimethylacetylenedicarboxylate. The newly synthesized sulfonamide derivatives were characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy, elemental analysis and alternative synthetic routes. The reactions products were evaluated for their antiproliferative activity against a panel of three different human cancerous cell lines, MCF-7 (breast), HepG-2 (liver) and HCT-116 (colon) and the results were deployed to derive the structure-activity relationships (SAR). Various test compounds were potent antiproliferative to cancerous cells; reaching very low micromolar levels, as in case of 21 which showed IC50 value of 6.2 µM against HepG-2 cell. In addition, treatment of cancerous cells with the synthesized compounds induced cell apoptosis and G2/M phase arrest evidenced by flow cytometric analysis. Furthermore, the activity of the synthesized compounds against TOP I and II were documented by DNA relaxation assays. Data revealed that compound 24 significantly interfered with TOP I- and II-mediated DNA relaxation, nicking and decatenation, with IC50 values 27.8 and 33.6 µM, respectively. Moreover, the molecular docking studies supported the results from enzymatic assays, where compound 24 was intercalated between nucleotides flanking the DNA cleavage site via pi-pi stacking and hydrophobic interactions. In conclusion, aromatic heterocycles linked to sulfonamides are excellent molecular frameworks amenable for optimization as dual TOP I and II poisons to control various human malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type I/metabolism , Heterocyclic Compounds/pharmacology , Molecular Docking Simulation , Sulfonamides/pharmacology , Topoisomerase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Heterocyclic Compounds/chemistry , Humans , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/chemistry , Tumor Cells, Cultured
8.
Int J Mol Sci ; 20(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717402

ABSTRACT

Protein kinases orchestrate diverse cellular functions; however, their dysregulation is linked to metabolic dysfunctions, associated with many diseases, including cancer. Mitogen-Activated Protein (MAP) kinase is a notoriously oncogenic signaling pathway in human malignancies, where the extracellular signal-regulated kinases (ERK1/2) are focal serine/threonine kinases in the MAP kinase module with numerous cytosolic and nuclear mitogenic effector proteins. Subsequently, hampering the ERK kinase activity by small molecule inhibitors is a robust strategy to control the malignancies with aberrant MAP kinase signaling cascades. Consequently, new heterocyclic compounds, containing a sulfonamide moiety, were rationally designed, aided by the molecular docking of the starting reactant 1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)ethan-1-one (3) at the ATP binding pocket of the ERK kinase domain, which was relying on the molecular extension tactic. The identities of the synthesized compounds (4-33) were proven by their spectral data and elemental analysis. The target compounds exhibited pronounced anti-proliferative activities against the MCF-7, HepG-2, and HCT-116 cancerous cell lines with potencies reaching a 2.96 µM for the most active compound (22). Moreover, compounds 5, 9, 10b, 22, and 28 displayed a significant G2/M phase arrest and induction of the apoptosis, which was confirmed by the cell cycle analysis and the flow cytometry. Thus, the molecular extension of a small fragment bounded at the ERK kinase domain is a valid tactic for the rational synthesis of the ERK inhibitors to control various human malignancies.


Subject(s)
Drug Design , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Sulfonamides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Domains , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship
9.
Bioorg Chem ; 87: 560-571, 2019 06.
Article in English | MEDLINE | ID: mdl-30928878

ABSTRACT

Novel ß-enaminonitrile/ester compounds (4, 6) and an imidate of 4 (9) were utilized as key scaffolds for the synthesis of newly 2-substituted 4H-benzo[h]chromene (7, 8, 10, 11, 13, 14) and 7H-benzo[h]chromeno[2,3-d]pyrimidine derivatives (15-19). The spectral data confirmed the successful isolation of the desired compounds. The targeted compounds were assessed for their in vitro anticancer activity against mammary gland breast cancer cell line (MCF-7), human colon cancer (HCT-116), and liver cancer (HepG-2), while doxorubicin, vinblastine, and colchicine were utilized as standard references drugs. Some of the examined compounds displayed high growth inhibitory activity against the three different cell lines. For example, the aminoimino derivative (18) exhibited excellent antitumor activity versus all cancer cell lines with IC50 values = 0.45 µg/mL, 0.7 µg/mL, and 1.7 µg/mL. Among the tested molecules, compounds 9, 15, and 18 were selected for further study regarding their effects on cell cycle analysis, apoptosis assay, caspase 3/7 activity, and DNA fragmentation. We found that these three potent cytotoxic compounds induce cell cycle arrest at the S and G2/M phases, which causes apoptosis. Furthermore, these compounds significantly inhibit the invasion and migration of the different tested cancer cells. Finally, the SAR survey highlighted the antitumor activity of the new molecules that was remarkably influenced by the hydrophilicity of substituent as well the fused rings at certain positions.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzopyrans/pharmacology , Heterocyclic Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Hep G2 Cells , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
10.
Molecules ; 24(6)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889862

ABSTRACT

Novel fused chromenes (4,7⁻11) and pyrimidines (12⁻16) were designed, synthesized, and evaluated for their mammary gland breast cancer (MCF-7), human colon cancer (HCT-116), and liver cancer (HepG-2) activities. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR, and mass spectroscopy. The preliminary results of the bioassay disclosed that some of the target compounds were proven to have a significant antiproliferative effect against the three cell lines, as compared to Doxorubicin, Vinblastine, and Colchicine, used as reference drugs. Particularly, compounds 7 and 14 exerted promising anticancer activity towards all cell lines and were chosen for further studies, such as cell cycle analysis, cell apoptosis, caspase 3/7 activity, DNA fragmentation, cell invasion, and migration. We found that these potent cytotoxic compounds induced cell cycle arrest at the S and G2/M phases, prompting apoptosis. Furthermore, these compounds significantly inhibit the invasion and migration of the different tested cancer cells. The structure-activity relationship (SAR) survey highlights that the antitumor activity of the desired compounds was affected by the hydrophobic or hydrophilic nature of the substituent at different positions.


Subject(s)
Antineoplastic Agents/pharmacology , Benzopyrans/chemical synthesis , Caspase 3/metabolism , Caspase 7/metabolism , Caspase Inhibitors/pharmacology , Cell Cycle/drug effects , Drug Design , Heterocyclic Compounds/chemical synthesis , Apoptosis/drug effects , Benzopyrans/chemistry , Benzopyrans/pharmacology , Caspase Inhibitors/chemical synthesis , Caspase Inhibitors/chemistry , Cell Line, Tumor , Cell Movement/drug effects , DNA Fragmentation/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Inhibitory Concentration 50 , Neoplasm Invasiveness , Structure-Activity Relationship
11.
Z Naturforsch C J Biosci ; 72(11-12): 467-475, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-28525356

ABSTRACT

A new series of heterocyclic Schiff bases 2-9 containing indole moiety were synthesized by facile and efficient condensation of indole-3/2/5-carboxaldehyde (1a/1b/1c) with different aromatic and heterocyclic primary amines using conventional and/or microwave irradiation methods. The structures of the obtained compounds were assigned by sophisticated spectroscopic and spectrometric techniques (1D-NMR, 2D-NMR and MS). The synthesized compounds were screened for their cytotoxicity and antibacterial activities. In vitro cytotoxicity screening revealed that compound 5 exhibited moderate activity against KB-3-1 cell line (IC50=57.7 µM) while 5-indolylimino derivative 7 indicated close to the activity (IC50=19.6 µM) in comparison with the positive control (+)-Griseofulvin (IC50=19.2 µM), while the tested compounds 5, 6b, 7 and 9 revealed good or moderate antibacterial activity. In addition, molecular docking study of Schiff bases 2-9 was performed by Molecular Operating Environment (MOE 2014.09) program on the matrix metalloproteinase-8 (MMP-8) (Protein Data Bank (PDB) ID: 1MNC) in an attempt to explore their mode of action as anticancer drugs.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Chemistry Techniques, Synthetic , Cytotoxins/chemical synthesis , Indoles/chemistry , Matrix Metalloproteinase 8/chemistry , Schiff Bases/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Cell Line, Tumor , Cytotoxins/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Griseofulvin/chemistry , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Micrococcus luteus/drug effects , Micrococcus luteus/growth & development , Microwaves , Molecular Docking Simulation , Pseudomonas/drug effects , Pseudomonas/growth & development , Schiff Bases/pharmacology , Staphylococcus/drug effects , Staphylococcus/growth & development
12.
Molecules ; 16(1): 307-18, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21266944

ABSTRACT

Vilsmeier formylation of 2-(1-phenylhydrazonoethyl)naphtho[2,1-b]furan (2) gave 3-naphtho[2,1-b]furan-2-yl-1-phenyl-1H-pyrazole-4-carbaldehyde (3), which was reacted with C- and N-nucleophiles to afford naphthofuranpyrazol derivatives 4-8. Treatment of 2-[(3-(naphtho[2,1-b]furan-2-yl)-1-phenyl-1H-pyrazol-4-yl)methylene]-malononitrile (4a) with reactants having active hydrogen and Et3N gave the corresponding pyrazoline, pyran and chromene addition product derivatives 10, 12 and 13, consisting of three different connected heterocyclic moieties. Reaction of 1-((3-(naphtho[2,1-b]furan-2-yl)-1-phenyl-1H-pyrazol-4-yl) methylene)-2-phenylhydrazone (6b) with AcONa and ethyl bromoacetate or chloroacetone afforded the thiazolidinone and methylthiazole derivatives 14 and 15, respectively. In addition, intramolecular cyclization of 6d with Ac2O afford the corresponding 1,3,4-thiadiazol-2-yl acetamide derivative 16. The structures of the synthesized compounds were confirmed by IR, ¹H-NMR/¹³C-NMR and mass spectral studies. Compound 14 showed promising effects against the tested Gram positive and negative bacteria and fungi.


Subject(s)
Naphthalenes/chemical synthesis , Naphthalenes/pharmacology , Pyrans/chemical synthesis , Pyrans/pharmacology , Pyrazoles/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Drug Evaluation, Preclinical , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Naphthalenes/chemistry , Pyrans/chemistry , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...