Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(11): 7431-7438, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446768

ABSTRACT

Wet-chemical oxidation of graphite in a mixture of sulfuric acid with a strong oxidizer, such as potassium permanganate, leads to the formation of graphene oxide with hydroxyl and epoxide groups as the major functional groups. Nevertheless, the reaction mechanism remains unclear and the source of oxygen is a subject of debate. It could theoretically originate from the oxidizer, water, or sulfuric acid. In this study, we employed 18O and 17O labeled reagents to experimentally elucidate the reaction mechanism and, thus, determine the origin of oxo-functional groups. Our findings reveal the multifaceted roles of sulfuric acid, acting as a dispersion medium, a dehydrating agent for potassium permanganate, and an intercalant. Additionally, it significantly acts as a source of oxygen next to manganese oxides. Through 17O solid-state magic-angle spinning (MAS) NMR experiments, we exclude water as a direct reaction partner during oxygenation. With labeling experiments, we conclude on mechanistic insights, which may be exploited for the synthesis of novel graphene derivatives.

2.
Small ; : e2311987, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506566

ABSTRACT

Functionalization of pristine graphene by hydrogen and fluorine is well studied, resulting in graphane and fluorographene structures. In contrast, functionalization of pristine graphene with iodine has not been reported. Here, the functionalization of graphene with iodine using photochemical activation is presented, which is thermally reversible at 400 °C. Additional dispersive dominant Raman modes that are probed by resonance Raman spectroscopy are observed. Additionally, iodinated graphene is probed by Kelvin probe force microscopy and by transport measurements showing p-doping surpassing non-covalent iodine doping by charge transfer-complex formation. The emergent Raman modes combined with strong p-doping indicate that iodine functionalization is distinct from simple iodine doping. A reaction mechanism based on these findings is proposed, identifying the large size of iodine atoms as the probable cause governing regiochemically controlled addition due to steric hinderance of reactive sites. The modification of the electronic structure is explained by the confinement of 1D trans-oligoene chains between sp3 -defects. These results demonstrate the uniqueness of iodine reactivity toward graphene and the modification of the electronic structure of iodinated graphene, highlighting its dependence on the spatial arrangement of substituents.

3.
Chemistry ; 25(38): 8955-8959, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31038228

ABSTRACT

Synthesis and studies of graphite oxide started more than 150 years ago and turned into a boom by the measurements of the outstanding physical properties of graphene. A series of preparation protocols emanated trying to optimize the synthesis of graphene oxide in order to obtain a less defective material, as source for graphene. However, over-oxidation of the carbon framework hampered establishing structure-property relationships. Here, the fact that two different synthetic methods for graphene oxide preparation lead to very similar types of graphene oxide with a preserved graphene lattice is demonstrated. Either sodium chlorate in nitric acid (similar to Brodie's method) or potassium permanganate in sulfuric acid (similar to Hummers' method) treatment are possible; however, reaction conditions must be controlled. With a preserved carbon lattice analytical differences between the samples relate to the altered on-plane functionality. Consequently, terming preparation protocols "according to Brodie's/Hummers' method" is not sufficient.

4.
Nanoscale ; 11(7): 3112-3116, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30556551

ABSTRACT

A highly conductive graphene derivative was produced by using a low-defect form of graphene oxide, oxo-G, in conjunction with voltage-reduction, a simple and environmentally-benign procedure for removing oxygen-containing functional groups. A low temperature coefficient of resistance was achieved, making this material promising for temperature-stable electronics and sensors.

5.
Angew Chem Int Ed Engl ; 58(11): 3599-3603, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30570208

ABSTRACT

The development of versatile functionalization concepts for graphene is currently in the focus of research. Upon oxo-functionalization of graphite, the full surface of graphene becomes accessible for C-C bond formation to introduce out-of-plane functionality. Herein, we present the arylation of graphene with arylazocarboxylic tert-butyl esters, which generates aryl radicals after activation with an acid. Surprisingly, the degree of functionalization is related to the concentration of lattice vacancy defects in the graphene material. Consequently, graphene materials that are free from lattice defects are not reactive. The reaction can be applied to graphene dispersed in solvents and leads to bitopic functionalization as well as monotopic functionalization when the graphene is deposited on surfaces. As the arylazocarboxylic tert-butyl ester moiety can be attached to various molecules, the presented method paves the way to functional graphene derivatives, with the density of defects determining the degree of functionalization.

6.
Chemistry ; 24(50): 13348-13354, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-29902333

ABSTRACT

Controlled covalent functionalization of graphene remains a challenging task owing to the heterogeneous nature of materials. Functionalization approaches for graphene either lack in quantifying the degree of functionalization or they do not discriminate between covalent and non-covalent functionalization. Here, graphite is oxidized and exfoliated in a three-step procedure and subsequently reduced and functionalized by hexylation. Although Raman spectroscopy is powerful to determine the degree of in-plane lattice defects (θLD ) and functionalization (θFD ), the method fails at detecting introduced hexyl groups at a concentration of about 0.03 %, next to the pre-existing in-plane lattice defects of 0.7 %. However, sensitive thermogravimetric analysis coupled with gas chromatography and mass spectrometry (TGA-GC/MS) can prove the hexylation reaction. The efficiency of functionalization is comparable to reductive functionalization of pristine chemical vapor deposition (CVD)-graphene and bulk graphite.

7.
Nat Commun ; 9(1): 836, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483555

ABSTRACT

Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

8.
Phys Chem Chem Phys ; 19(4): 2683-2686, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28091635

ABSTRACT

Controlled patterning of graphene is an important task towards device fabrication and thus is the focus of current research activities. Graphene oxide (GO) is a solution-processible precursor of graphene. It can be patterned by thermal processing. However, thermal processing of GO leads to decomposition and CO2 formation. Alternatively, focused electron beam induced processing (FEBIP) techniques can be used to pattern graphene with high spatial resolution. Based on this approach, we explore FEBIP of GO deposited on SiO2. Using oxo-functionalized graphene (oxo-G) with an in-plane lattice defect density of 1% we are able to image the electron beam-induced effects by scanning Raman microscopy for the first time. Depending on electron energy (2-30 keV) and doses (50-800 mC m-2) either reduction of GO or formation of permanent lattice defects occurs. This result reflects a step towards controlled FEBIP processing of oxo-G.

9.
Angew Chem Int Ed Engl ; 55(51): 15771-15774, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27865029

ABSTRACT

Controlling the chemistry of graphene is necessary to enable applications in materials and life sciences. Research beyond graphene oxide is targeted to avoid the highly defective character of the carbon framework. Herein, we show how to optimize the synthesis of oxo-functionalized graphene (oxo-G) to prepare high-quality monolayer flakes that even allow for direct transmission electron microscopy investigation at atomic resolution (HRTEM). The role of undesired residuals is addressed and sources are eliminated. HRTEM provides clear evidence for the exceptional integrity of the carbon framework of such oxo-G sheets. The patchy distribution of oxo-functionality on the nm-scale, observed on our highly clean oxo-G sheets, corroborates theoretical predictions. Moreover, defined electron-beam irradiation facilitates gentle de-functionalization of oxo-G sheets, a new route towards clean graphene, which is a breakthrough for localized graphene chemistry.

10.
J Am Chem Soc ; 138(36): 11445-8, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27523161

ABSTRACT

The structure of graphene oxide (GO) is a matter of discussion. While established GO models are based on functional groups attached to the carbon framework, another frequently used model claims that GO consists of two components, a slightly oxidized graphene core and highly oxidized molecular species, oxidative debris (OD), adsorbed on it. Those adsorbents are claimed to be the origin for optical properties of GO. Here, we examine this model by preparing GO with a low degree of functionalization, combining it with OD and studying the optical properties of both components and their combination in an artificial two-component system. The analyses of absorption and emission spectra as well as lifetime measurements reveal that properties of the combined system are distinctly different from those of GO. That confirms structural models of GO as a separate oxygenated hexagonal carbon framework with optical properties governed by its internal structure rather than the presence of OD. Understanding the structure of GO allows further reliable interpretation of its optical and electronic properties and enables controlled processing of GO.

11.
Nanoscale ; 8(14): 7572-9, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26984451

ABSTRACT

This work highlights a surprisingly simple and kinetically controlled highly efficient indirect method for the production of high quality reduced graphene oxide (rGO) flakes via UV irradiation of aqueous dispersions of graphene oxide (GO), in which the GO is not excited directly. While the direct photoexcitation of aqueous GO (when GO is the only light-absorbing component) takes several hours of reaction time at ambient temperature (4 h) leading only to a partial GO reduction, the addition of small amounts of isopropanol and acetone (2% and 1%) leads to a dramatically shortened reaction time by more than two orders of magnitude (2 min) and a very efficient and soft reduction of graphene oxide. This method avoids the formation of non-volatile species and in turn contamination of the produced rGO and it is based on the highly efficient generation of reducing carbon centered isopropanol radicals via the reaction of triplet acetone with isopropanol. While the direct photolysis of GO dispersions easily leads to degradation of the carbon lattice of GO and thus to a relatively low electric conductivity of the films of flakes, our indirect photoreduction of GO instead largely avoids the formation of defects, keeping the carbon lattice intact. Mechanisms of the direct and indirect photoreduction of GO have been elucidated and compared. Raman spectroscopy, XPS and conductivity measurements prove the efficiency of the indirect photoreduction in comparison with the state-of-the-art reduction method for GO (hydriodic acid/trifluoroacetic acid). The rapid reduction times and water solvent containing only small amounts of isopropanol and acetone may allow easy process up-scaling for technical applications and low-energy consumption.

12.
Angew Chem Int Ed Engl ; 55(1): 405-7, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26549205

ABSTRACT

Potential biomedicinal applications of graphene oxide (GO), for example, as a carrier of biomolecules or a reagent for photothermal therapy and biosensing, are limited by its cytotoxicity and mutagenicity. It is believed that these properties are at least partially caused by GO-induced oxidative stress in cells. However, it is not known which chemical fragments of GO are responsible for this unfavorable effect. We generated four GOs containing variable redox-active groups on the surface, including Mn(2+), C-centered radicals, and endoperoxides (EPs). A comparison of the abilities of these materials to generate reactive oxygen species in human cervical cancer cells revealed that EPs play a crucial role in GO-induced oxidative stress. These data could be applied to the rational design of biocompatible nontoxic GOs for biomedical applications.


Subject(s)
Graphite/chemistry , Graphite/toxicity , Oxides/chemistry , Oxides/toxicity , Peroxides/toxicity , Uterine Cervical Neoplasms/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/toxicity , Cell Line, Tumor , Drug Design , Female , Graphite/metabolism , Humans , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxides/metabolism , Peroxides/chemistry , Peroxides/metabolism , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/pathology
13.
Molecules ; 20(12): 21050-7, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26703526

ABSTRACT

In the last decades, organic azides haven proven to be very useful precursors in organic chemistry, for example in 1,3-dipolar cycloaddition reactions (click-chemistry). Likewise, azides can be introduced into graphene oxide with an almost intact carbon framework, namely oxo-functionalized graphene (oxo-G1), which is a highly oxidized graphene derivative and a powerful precursor for graphene that is suitable for electronic devices. The synthesis of a graphene derivative with exclusively azide groups (graphene azide) is however still a challenge. In comparison also hydrogenated graphene, called graphene or halogenated graphene remain challenging to synthesize. A route to graphene azide would be the desoxygenation of azide functionalized oxo-G1. Here we show how treatment of azide functionalized oxo-G1 with HCl enlarges the π-system and removes strongly adsorbed water and some oxo-functional groups. This development reflects one step towards graphene azide.


Subject(s)
Azides/chemistry , Azides/chemical synthesis , Graphite/chemistry , Graphite/chemical synthesis , Adsorption , Click Chemistry/methods , Cycloaddition Reaction/methods , Hydrochloric Acid/chemistry , Oxides/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...