Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(3): 1135-41, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25557142

ABSTRACT

The stability and spatial separation of nanoparticles (NP's) is essential for employing their advantageous nanoscale properties. This work demonstrates the entrapment of gold NP's embedded in a porous inorganic matrix. Initially, gold NP's are decorated on fibrous nylon-6, which is used as an inexpensive sacrificial template. This is followed by inorganic modification using a novel single exposure cycle vapor phase technique resulting in distributed NP's embedded within a hybrid organic-inorganic matrix. The processing is extended to the synthesis of porous nanoflakes after calcination of the modified nylon-6 yielding a porous metal oxide framework surrounding the disconnected NP's with a surface area of 250 m(2)/g. A unique feature of this work is the use of a transmission electron microscope (TEM) equipped with an in situ annealing sample holder. The apparatus affords the opportunity to explore the underlying nanoscopic stability of NP's embedded in these frameworks in a single step. TEM analysis indicates thermal stability up to 670 °C and agglomeration characteristics thereafter. The vapor phase processes developed in this work will facilitate new complex NP/oxide materials useful for catalytic platforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...