Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 128(24): 246402, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35776452

ABSTRACT

We study, numerically, the charge neutral excitations (magnetorotons) in fractional quantum Hall systems, concentrating on the two Jain states near quarter filling, ν=2/7 and ν=2/9, and the ν=1/4 Fermi-liquid state itself. In contrast to the ν=1/3 states and the Jain states near half filling, on each of the two Jain states ν=2/7 and ν=2/9 the graviton spectral densities show two, instead of one, magnetoroton peaks. The magnetorotons have spin 2 and have opposite chiralities in the ν=2/7 state and the same chirality in the ν=2/9 state. We also provide a numerical verification of a sum rule relating the guiding center spin s[over ¯] with the spectral densities of the stress tensor.

2.
Phys Rev Lett ; 123(14): 146801, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702216

ABSTRACT

We elucidate the nature of neutral collective excitations of fractional quantum Hall liquids in the long-wavelength limit. We demonstrate that they are chiral gravitons carrying angular momentum -2, which are quanta of quantum motion of an internal metric, and show up as resonance peaks in the system's response to what is the fractional Hall analog of gravitational waves. The relation with existing and possible future experimental work that can detect these fractional quantum Hall gravitons and reveal their chirality is discussed.

3.
Phys Rev Lett ; 121(14): 147202, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339436

ABSTRACT

We construct model wave functions for the half-filled Landau level parametrized by "composite fermion occupation-number configurations" in a two-dimensional momentum space, which correspond to a Fermi sea with particle-hole excitations. When these correspond to a weakly excited Fermi sea, they have a large overlap with wave functions obtained by the exact diagonalization of lowest-Landau-level electrons interacting with a Coulomb interaction, allowing exact states to be identified with quasiparticle configurations. We then formulate a many-body version of the single-particle Berry phase for adiabatic transport of a single quasiparticle around a path in momentum space, and evaluate it using a sequence of exact eigenstates in which a single quasiparticle moves incrementally. In this formulation the standard free-particle construction in terms of the overlap between "periodic parts of successive Bloch wave functions" is reinterpreted as the matrix element of a "momentum boost" operator between the full Bloch states, which becomes the matrix elements of a Girvin-MacDonald-Platzman density operator in the many-body context. This allows the computation of the Berry phase for the transport of a single composite fermion around the Fermi surface. In addition to a phase contributed by the density operator, we find a phase of exactly π for this process.

4.
Phys Rev Lett ; 121(14): 147601, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339437

ABSTRACT

Nematicity in quantum Hall systems has been experimentally well established at excited Landau levels. The mechanism of the symmetry breaking, however, is still unknown. Pomeranchuk instability of Fermi liquid parameter F_{ℓ}≤-1 in the angular momentum ℓ=2 channel has been argued to be the relevant mechanism, yet there are no definitive theoretical proofs. Here we calculate, using the variational Monte Carlo technique, Fermi liquid parameters F_{ℓ} of the composite fermion Fermi liquid with a finite layer width. We consider F_{ℓ} in different Landau levels n=0, 1, 2 as a function of layer width parameter η. We find that unlike the lowest Landau level, which shows no sign of Pomeranchuk instability, higher Landau levels show nematic instability below critical values of η. Furthermore, the critical value η_{c} is higher for the n=2 Landau level, which is consistent with observation of nematic order in ambient conditions only in the n=2 Landau levels. The picture emerging from our work is that approaching the true 2D limit brings half-filled higher Landau-level systems to the brink of nematic Pomeranchuk instability.

5.
Phys Rev Lett ; 120(6): 067003, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481220

ABSTRACT

We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge q_{p}. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j=|q_{p}|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge q_{p} independent of concrete pairing mechanism.

6.
Phys Rev Lett ; 115(12): 126805, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26431006

ABSTRACT

Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for the exotic fundamental physics they would exhibit, and for universal quantum computing applications. The fractional quantum Hall (FQH) state at a filling factor of ν=12/5 is a promising candidate; however, its precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH ν=13/5 state and its particle-hole conjugate state at 12/5 with the Coulomb interaction, and we address the issue of possible competing states. Based on a large-scale density-matrix renormalization group calculation in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at ν=13/5 and 12/5 is captured by the k=3 parafermion Read-Rezayi state (RR_{3}), including a robust excitation gap and the topological fingerprint from the entanglement spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR_{3} state at 13/5 and 12/5 filling numbers.

7.
Phys Rev Lett ; 114(20): 206402, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26047244

ABSTRACT

The so-called "non-Fermi liquid" behavior is very common in strongly correlated systems. However, its operational definition in terms of "what it is not" is a major obstacle for the theoretical understanding of this fascinating correlated state. Recently there has been much interest in entanglement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have been limited to models without direct experimental realizations. Here we focus on a two-dimensional electron fluid under magnetic field and filling fraction ν=1/2, which is believed to be a non-Fermi liquid state. Using a composite fermion wave function which captures the ν=1/2 state very accurately, we compute the second Rényi entropy using the variational Monte Carlo technique. We find the entanglement entropy scales as LlogL with the length of the boundary L as it does for free fermions, but has a prefactor twice that of free fermions.

8.
Phys Rev Lett ; 112(9): 096803, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24655269

ABSTRACT

The topological order is encoded in the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order for topological band models through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice models with bosonic particles. We identify multiple independent minimal entangled states (MESs) in the ground state manifold on a torus. The extracted modular S matrix from MESs faithfully demonstrates the Ising anyon or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings unambiguously demonstrate the topological nature of the quantum states for these flatband models without using the knowledge of model wave functions.

9.
Phys Rev Lett ; 112(2): 026804, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24484038

ABSTRACT

We construct model wave functions for a family of single-quasielectron states supported by the ν = 1/3 fractional quantum Hall fluid. The charge e* = e/3 quasielectron state is identified as a composite of a charge-2e* quasiparticle and a -e* quasihole, orbiting around their common center of charge with relative angular momentum nℏ > 0, and corresponds precisely to the "composite fermion" construction based on a filled n = 0 Landau level plus an extra particle in level n > 0. An effective three-body model (one 2e* quasiparticle and two -e* quasiholes) is introduced to capture the essential physics of the neutral bulk excitations.

10.
Phys Rev Lett ; 108(25): 256807, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-23004636

ABSTRACT

We construct model wave functions for the collective modes of fractional quantum Hall systems. The wave functions are expressed in terms of symmetric polynomials characterized by a root partition that defines a "squeezed" basis, and show excellent agreement with exact diagonalization results for finite systems. In the long wavelength limit, we prove that the model wave functions are identical to those predicted by the single-mode approximation, leading to intriguing interpretations of the collective modes from the perspective of the ground-state guiding-center metric.

11.
Phys Rev Lett ; 109(26): 266806, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368602

ABSTRACT

We study the nature of the ν=5/2 quantum Hall state in wide quantum wells under the mixing of electronic subbands and Landau levels. A general method is introduced to analyze the Moore-Read pfaffian state and its particle-hole conjugate, the anti-pfaffian state, under periodic boundary conditions in a "quartered" Brillouin zone scheme containing both even and odd numbers of electrons. By examining the rotational quantum numbers on the torus, we show spontaneous breaking of the particle-hole symmetry can be observed in finite-size systems. In the presence of electronic-subband and Landau-level mixing, the particle-hole symmetry is broken in such a way that the anti-pfaffian state is unambiguously favored, and becomes more robust in the vicinity of a transition to the compressible phase, in agreement with recent experiments.

12.
Phys Rev Lett ; 107(11): 116801, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-22026690

ABSTRACT

The fundamental collective degree of freedom of fractional quantum Hall states is identified as a unimodular two-dimensional spatial metric that characterizes the local shape of the correlations of the incompressible fluid. Its quantum fluctuations are controlled by a topologically quantized "guiding-center spin." Charge fluctuations are proportional to its Gaussian curvature.

13.
Phys Rev Lett ; 103(1): 016801, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19659164

ABSTRACT

We obtain several clustering properties of the Jain states at filling k/2k+1: they are a product of a Vandermonde determinant and a bosonic polynomial at filling k/k+1 which vanishes when k+1 particles cluster together. We show that all Jain states satisfy a "squeezing rule" which severely reduces the dimension of the Hilbert space necessary to generate them. We compute the topological entanglement spectrum of the Jain nu=2/5 state and compare it to both the Coulomb ground state and the nonunitary Gaffnian state. All three states have a very similar "low-energy" structure. However, the Jain state entanglement "edge" state counting matches both the Coulomb counting as well as two decoupled U(1) free bosons, whereas the Gaffnian edge counting misses some of the edge states of the Coulomb spectrum.

14.
Phys Rev Lett ; 102(6): 066802, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19257618

ABSTRACT

We present model wave functions for quasielectron (as opposed to quasihole) excitations of the unitary Z_{k} parafermion sequence (Laughlin, Moore-Read, or Read-Rezayi) of fractional quantum Hall states. We uniquely define these states through two generalized clustering conditions: they vanish when either a cluster of k+2 electrons is put together or when two clusters of k+1 electrons are formed at different positions. For Abelian fractional quantum Hall states (k=1), our construction reproduces the Jain quasielectron wave function and elucidates the difference between the Jain and Laughlin quasielectrons.

15.
Phys Rev Lett ; 101(24): 246806, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19113648

ABSTRACT

We compute the physical properties of non-Abelian fractional quantum Hall (FQH) states described by Jack polynomials at general filling nu = k/r. For r = 2, these states are the Zk Read-Rezayi parafermions, whereas for r > 2 they represent new FQH states. The r = k+1 states, multiplied by a Vandermonde determinant, are a non-Abelian alternative construction of states at fermionic filling 2/5,3/7,4/9,.... We obtain the thermal Hall coefficient, the quantum dimensions, the electron scaling exponent, and the non-Abelian quasihole propagator. The properties of the r > 2 Jack polynomials indicate they are correlators of fields of nonunitary conformal field theories (CFT), but the CFT-FQH connection fails when invoked to compute physical properties such as the quasihole propagator. The quasihole wave function, written as a coherent state representation of Jack polynomials, has an identical structure for all non-Abelian states.

16.
Phys Rev Lett ; 101(1): 010504, 2008 Jul 04.
Article in English | MEDLINE | ID: mdl-18764098

ABSTRACT

We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.

17.
Phys Rev Lett ; 100(24): 246802, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18643608

ABSTRACT

We describe an occupation-number-like picture of fractional quantum Hall states in terms of polynomial wave functions characterized by a dominant occupation-number configuration. The bosonic variants of single-component Abelian and non-Abelian fractional quantum Hall states are modeled by Jack symmetric polynomials (Jacks), characterized by dominant occupation-number configurations satisfying a generalized Pauli principle. In a series of well-known quantum Hall states, including the Laughlin, Read-Moore, and Read-Rezayi, the Jack polynomials naturally implement a "squeezing rule" that constrains allowed configurations to be restricted to those obtained by squeezing the dominant configuration. The Jacks presented in this Letter describe new trial uniform states, but it is yet to be determined to which actual experimental fractional quantum Hall effect states they apply.

18.
Phys Rev Lett ; 100(11): 116802, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18517810

ABSTRACT

We report on numerical study of the Dirac fermions in partially filled N=3 Landau level (LL) in graphene. At half-filling, the equal-time density-density correlation function displays sharp peaks at nonzero wave vectors +/-q*. Finite-size scaling shows that the peak value grows with electron number and diverges in the thermodynamic limit, which suggests an instability toward a charge density wave. A symmetry broken stripe phase is formed at large system size limit, which is robust against perturbation from disorder scattering. Such a quantum phase is experimentally observable through transport measurements. Associated with the special wave functions of the Dirac LL, both stripe and bubble phases become possible candidates for the ground state of the Dirac fermions in graphene with lower filling factors in the N=3 LL.

19.
Phys Rev Lett ; 100(1): 013904, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-18232766

ABSTRACT

We show how, in principle, to construct analogs of quantum Hall edge states in "photonic crystals" made with nonreciprocal (Faraday-effect) media. These form "one-way waveguides" that allow electromagnetic energy to flow in one direction only.

20.
Phys Rev Lett ; 99(19): 196802, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-18233102

ABSTRACT

We study the competition between the long-range Coulomb interaction, disorder scattering, and lattice effects in the integer quantum Hall effect (IQHE) in graphene. By direct transport calculations, both nu=1 and nu=3 IQHE states are revealed in the lowest two Dirac Landau levels. However, the critical disorder strength above which the nu=3 IQHE is destroyed is much smaller than that for the nu=1 IQHE, which may explain the absence of a nu=3 plateau in recent experiments. While the excitation spectrum in the IQHE phase is gapless within numerical finite-size analysis, we do find and determine a mobility gap, which characterizes the energy scale of the stability of the IQHE. Furthermore, we demonstrate that the nu=1 IQHE state is a Dirac valley and sublattice polarized Ising pseudospin ferromagnet, while the nu=3 state is an xy plane polarized pseudospin ferromagnet.

SELECTION OF CITATIONS
SEARCH DETAIL
...