Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(34): 7703-7710, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37606586

ABSTRACT

The optical spectra of neutral oxygen vacancies (F0 centers) in the bulk MgO lattice are investigated using density matrix embedding theory. The impurity Hamiltonian is solved with the complete active space self-consistent field and second-order n-electron valence state perturbation theory (NEVPT2-DMET) multireference methods. To estimate defect-localized vertical excitation energies at the nonembedding and thermodynamic limits, a double extrapolation scheme is employed. The extrapolated NEVPT2-DMET vertical excitation energy value of 5.24 eV agrees well with the experimental absorption maxima at 5.03 eV, whereas the excitation energy value of 2.89 eV at the relaxed triplet defect-localized state geometry overestimates the experimental emission at 2.4 eV by only nearly 0.5 eV, indicating the involvement of the triplet-singlet decay pathway.

2.
J Phys Chem Lett ; 14(18): 4273-4280, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37126760

ABSTRACT

We investigate the negatively charged nitrogen-vacancy center in diamond using periodic density matrix embedding theory (pDMET). To describe the strongly correlated excited states of this system, the complete active space self-consistent field (CASSCF) followed by n-electron valence state second-order perturbation theory (NEVPT2) was used as the impurity solver. Since the NEVPT2-DMET energies show a linear dependence on the inverse of the size of the embedding subspace, we performed an extrapolation of the excitation energies to the nonembedding limit using a linear regression. The extrapolated NEVPT2-DMET first triplet-triplet excitation energy is 2.31 eV and that for the optically inactive singlet-singlet transition is 1.02 eV, both in agreement with the experimentally observed vertical excitation energies of ∼2.18 eV and ∼1.26 eV, respectively. This is the first application of pDMET to a charged periodic system and the first investigation of the NV- defect using NEVPT2 for periodic supercell models.

3.
J Chem Phys ; 156(1): 014110, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998329

ABSTRACT

We present a novel and cost-effective approach of using a second similarity transformation of the Hamiltonian to include the missing higher-order terms in the second-order approximate coupled cluster singles and doubles (CC2) model. The performance of the newly developed ST-EOM-CC2 model has been investigated for the calculation of excitation energies of valence, Rydberg, and charge-transfer excited states. The method shows significant improvement in the excitation energies of Rydberg and charge-transfer excited states as compared to the conventional CC2 method while retaining the good performance of the latter for the valence excited state. This method retains the charge-transfer separability of the charge-transfer excited states, which is a significant advantage over the traditional CC2 method. A second order many-body perturbation theory variant of the new method is also proposed.

4.
J Chem Phys ; 155(1): 014105, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34241374

ABSTRACT

We present a natural orbital-based implementation of the intermediate Hamiltonian Fock space coupled-cluster method for the (1, 1) sector of Fock space. The use of natural orbitals significantly reduces the computational cost and can automatically choose an appropriate set of active orbitals. The new method retains the charge transfer separability of the original intermediate Hamiltonian Fock space coupled-cluster method and gives excellent performance for valence, Rydberg, and charge-transfer excited states. It offers significant computational advantages over the popular equation of motion coupled cluster method for excited states dominated by single excitations.

5.
J Phys Chem A ; 124(19): 3947-3962, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32306726

ABSTRACT

We have presented a multilayer implementation of the equation of motion coupled-cluster method for the electron affinity, based on local and pair natural orbitals. The method gives consistent accuracy for both localized and delocalized anionic states and results in many-fold speed-up as compared to the canonical and DLPNO-based implementation of the EA-EOM-CCSD method. We have also developed an explicit fragment-based approach which can lead to even higher speed-up with little loss in accuracy. The multilayer method can be used to treat the environmental effect of both bonded and nonbonded nature on the electron attachment process in large molecules.

6.
J Chem Theory Comput ; 15(4): 2265-2277, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30860835

ABSTRACT

We present a multilayer implementation of the EOM-CCSD for the computation of ionization potentials of atoms and molecules in the presence of their environment. The method uses local orbitals to partition the system into a number of hypothetical fragments and treat different fragments of the system at different levels of theory. This approach significantly reduces the computational cost with a systematically controllable accuracy and is equally applicable to describe the environmental effect of both bonded and nonbonded nature. An accurate description of the interfragment interaction has been found to be crucial in determining the accuracy of the calculated IP values.

SELECTION OF CITATIONS
SEARCH DETAIL
...