Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Integr Environ Assess Manag ; 17(4): 753-766, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33210810

ABSTRACT

Multiple metal-impacted soils are often realistic scenarios for risk assessments, but tools to address these are currently lacking. The objective of this work was to evaluate whether assuming concentration addition (CA) of metal mixture effects was conservative for prospective risk assessment of soils that were elevated mainly in Ni and Cu and somewhat with Co, Pb, or As. Observed whole mixture toxicity for field soils with aged metal mixtures was compared to the expected whole mixture toxicity, assuming additivity of prospective single-metal thresholds ("toxic units") for the mixture components. Bioavailability-adjusted single-metal toxicity thresholds expected for those field soils were the median hazard concentration affecting 5% of species (HC5-50) from the predicted no-effect concentration (PNEC) calculator and calculated from the species-specific dose-response multiple linear relationships (MLRs), all from the European Union Registration, Evaluation, Authorisation and Restriction of Chemicals (EU REACH) dossiers for metals. Generic single-metal toxicity thresholds were based on Canadian Council of Ministers of the Environment soil quality guidelines (CCME SQGs) for agricultural soils. Observed toxicity thresholds were from the community-based risk assessments conducted for Port Colborne and Sudbury, Ontario, Canada. Mostly, prospective single-metal toxicity thresholds were protective relative to the observed toxicity, although that was species or ecological process dependent. The bioavailability-adjusted single-metal thresholds were less conservative than the CCME SQG method, even though the former is based on site-specific EC10 values, and the latter is based on generic EC25 values. When within-site variability in soil properties was used to calculate the 5th and 95th CI for the HC5 sum of toxic units (∑TUs), CA was conservative for far fewer endpoints. In addition, the prospective ∑TUs were more conservative predictions of the observed whole mixture toxicities for Port Colborne soils than for Sudbury soils. The most appropriate balance of accuracy and conservatism for identifying low-level risk of the whole mixtures in these soils appeared to be the bioavailability-adjusted HC5-50, which was applicable to many endpoints and 2 quite different exposure concentration ratios. Integr Environ Assess Manag 2021;17:753-766. © 2020 SETAC.


Subject(s)
Soil Pollutants , Soil , Cobalt , Copper , Nickel , Ontario , Prospective Studies , Soil Pollutants/analysis , Soil Pollutants/toxicity
2.
Chemosphere ; 267: 128861, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33187659

ABSTRACT

Several field-scale phytoextraction scenarios were created in a greenhouse study to investigate the feasibility of using Alyssum murale, to remediate three types of industrially Ni-contaminated soil (heavy clay, sand, organic muck) from Port Colborne, Ontario. The observed distribution of Ni mass between soil and aboveground vegetation was used in STELLA modeling software to predict timelines for the target soil Ni concentration, namely 1200 mg Ni/kg. Alyssum murale grown in sand would have a relatively constant pool of Ni available for plant uptake, which would not be the case for plants grown in organic muck and heavy clay. The maximum Ni extraction (%, plant Ni mass/soil Ni mass) was achieved in A. murale grown in unfertilized clay soil at the higher irrigation rate. Using these data, the STELLA model predicted that 246 years would be required to reduce soil Ni concentration in the most efficient combination of treatments to the remediation target. In addition, hypothetical A. murale Ni extraction in plant-soil systems optimized by manipulating soil chemistry and physical attributes, were modeled. The most optimized A. murale plant-soil systems for Ni extraction would require 9 years to achieve the same reduction, and it is not clear that this optimization can be achieved in the field. This study showed that phytoremediation using A. murale is not likely a time-sensitive approach for these soils.


Subject(s)
Soil Pollutants , Soil , Biodegradation, Environmental , Nickel/analysis , Ontario , Soil Pollutants/analysis
3.
J Hazard Mater ; 392: 122341, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32092659

ABSTRACT

Metal mixture toxicity across soil types is a daunting challenge to risk assessment. Here, we evaluated metal mixture toxicity in Oppia nitens, using ten fixed metal mixture ratios in five Canadian soils that closely matched some of the EU PNEC reference soils. Soils were dosed with five metals (Cu, Zn, Pb, Co, Ni) as single metals (ten concentrations) and as mixtures (eight concentrations). Synchronized adult mites were exposed to metals, with survival and reproduction assessed after 28 days. We found out that (i) the differences among soils in mite sensitivity and single metals were not consistent when mites were exposed to metal mixtures, (ii) assuming concentration addition, the mixture interaction factor (MIF) showed that single metal low effect levels excessively underestimated low level metal mixture effects (iii) Zn emerged as a protective metal in most mixtures, and (iv) Soil properties such as CEC, independent of effects on metal speciation, explained more of the variation than measured metals. This study suggests that metal risk assessment should be done on a case by case basis. Further work is needed to ensure that by protecting soil-dwelling organisms from single metals, the risk from metal mixtures is appropriately protected for.


Subject(s)
Metals, Heavy/toxicity , Mites/drug effects , Soil Pollutants/toxicity , Animals , Canada , Drug Interactions , Metallurgy , Mining
4.
Chemosphere ; 227: 444-454, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31003129

ABSTRACT

Soil habitat quality is thought to influence metal toxicity via changes in speciation and thereby toxicokinetics. Here, we assessed the toxicokinetic and toxicodynamic effects of habitat quality on mite, Oppia nitens when exposed to zinc (Zn) contaminated soils. Forty-seven soils were ranked into three habitat qualities; high, medium, and low based on biological reproduction of Folsomia candida, Enchytraeus crypticus, and Elymus lanceolatus. From the 47 soils, eighteen soils (comprising of six soils from each habitat quality) were randomly selected and dosed with field relevant concentrations of Zn. Mite survival and reproduction were assessed after 28 days. Total Zn, bioaccessible Zn, Zn bioavailability, Zn body burden, lactate dehydrogenase activity (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities of the mites were determined. Zinc toxicity and potency were much less in the high compared to low quality soils and the mites in the high habitat quality soils tolerated higher zinc body burdens (2040 ±â€¯130 µg/g b.w) than the lower habitat quality (1180 ±â€¯310 µg/g b.w). Lower LDH activity (20 ±â€¯2 µU mg-1) in the high quality soils compared to lower quality soils (50 ±â€¯8 µU mg-1) suggested that there was less stress in the high habitat quality mites. Despite changes in speciation across habitat qualities, bioavailability of zinc was similar (∼20%) irrespective of habitat quality. Our results suggest that the influence of soil properties on survival is modulated by toxicodynamics rather than toxicokinetics. Restoring habitat quality may be more important for soil invertebrate protection than metal concentration at contaminated sites.


Subject(s)
Environmental Monitoring/methods , Soil Pollutants/toxicity , Toxicokinetics , Zinc/toxicity , Animals , Arthropods , Ecosystem , Environmental Pollution , Metals/pharmacology , Mites/drug effects , Oligochaeta/drug effects , Reproduction/drug effects , Soil , Soil Pollutants/analysis
5.
Environ Toxicol Chem ; 38(4): 896-904, 2019 04.
Article in English | MEDLINE | ID: mdl-30675922

ABSTRACT

Current soil remediation guidelines for metals reflect single-generation laboratory studies, but in the field, organisms are exposed to metals for more than one generation. The present study assessed the multigenerational effect of zinc (Zn) on Oppia nitens under a pulse or continuous exposure scenario. Synchronized adult mites (parents) were exposed to 6 concentrations of Zn in a field soil. For the pulse exposure, juveniles of parent mites from 3 of the 6 concentrations (105, 158, 237, 335, 553, and 800 mg/kg) were kept in clean media and reared until the third generation. At every generation, the sensitivity of the mites to Zn was tested in a dose-response manner. For the continuous exposure, the mites produced from the parents were re-exposed to the same concentration as their parents. According to critical-level estimates like the median effect concentration, all populations of the F2 and F3 generation mites in the pulse exposure were less sensitive to Zn than the parents and were protected at 250 mg/kg of Zn (Canadian Council of Ministers of the Environment [2018] soil quality guideline). However, the mite generations of the continuous exposure remained as sensitive as the parent generation and were not protected by the Zn guideline level. The Zn niche width narrowed considerably for all continuously exposed mite populations, indicating that they were more sensitive than the parent. Our results show that Zn has a deleterious multigenerational effect on continuously exposed populations of mites. Environ Toxicol Chem 2019;38:896-904. © 2019 SETAC.


Subject(s)
Environmental Exposure/adverse effects , Mites/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Zinc/toxicity , Animals , Canada , Environmental Exposure/analysis , Mites/growth & development , Models, Theoretical , Reproduction/drug effects
6.
Environ Geochem Health ; 40(3): 1155-1174, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28600726

ABSTRACT

When the hazard quotient for ingestion (HQI) of a trace element in soil and dust particles is adjusted for the element's bioaccessibility, the HQI is typically reduced as compared to its calculation using pseudo-total element concentration. However, those studies have mostly used bulk particles (<2 mm or <250 µm), and the reduction in HQI when expressed as bioaccessible metal may not be similar among particle size fractions, the possibility probed by the present study of street dusts and soils collected in Tehran. The highest Cu, Pb and Zn near-total concentrations occurred in the finest particles of dusts and soils. Bioaccessible concentrations of Cu, Pb and Zn in the particles (mg kg-1) were obtained using simple bioaccessibility extraction test (SBET). The bioaccessibility (%) did not vary much among near-total concentrations. In the bulk (<250 µm) sample, the bioaccessible concentration of Cu and Pb increased as the pH of sample increased, while Zn bioaccessibility (%) in the bulk particles was influenced by organic matter and cation exchange capacity. X-ray diffraction identified sulfide and sulfate minerals in all of the size-fractionated particles, which are insoluble to slightly soluble in acidic conditions and included most of the Cu and Pb in the samples. The only Zn-bearing mineral identified was hemimorphite, which would be highly soluble in the SBET conditions. The calculated HQI suggested potential non-carcinogenic health risk to children and adults from ingestions of soils and dusts regardless of particle size consideration, in the order of Zn > Pb ≥ Cu. The HQI calculated from near-total metal was not much different for particle size classes relative to bulk particles; however, the bioaccessibility percent-adjusted HQI for Pb was higher for the smaller particles than the bulk. This work is novel in its approach to compare HQI for a bulk sample of particles with its composite particle size fractions.


Subject(s)
Copper/analysis , Dust/analysis , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Urban Health , Zinc/analysis , Adult , Biological Availability , Child , Environmental Exposure , Humans , Iran , Powder Diffraction , Rain , Risk Assessment , Temperature
7.
Environ Sci Technol ; 51(9): 5233-5241, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28383260

ABSTRACT

Simultaneous determinations of internal dose ([M]tiss) and external doses ([M]tot, {M2+} in solution) were conducted to study ternary mixture (Ni, Cu, Cd) chronic toxicity to Lemna minor in alkaline solution (pH 8.3). Also, concentration addition (CA) based on internal dose was evaluated as a tool for risk assessment of metal mixture. Multiple regression analysis of dose versus root growth inhibition, as well as saturation binding kinetics, provided insight into interactions. Multiple regressions were simpler for [M]tiss than [M]tot and {M2+}, and along with saturation kinetics to the internal biotic ligand(s) in the cytoplasm, they indicated that Ni-Cu-Cd competed for uptake into plant, but once inside, only Cu-Cd shared a binding site. Copper inorganic complexes (hydroxides, carbonates) played a role in metal bioavailability in single metal exposure but not in mixtures. Regardless of interactions, the current regulatory approach of using CA based on [M]tot can sufficiently predict mixture toxicity (∑TU close to 1), but CA based on [M]tiss was closest to unity across a range of doses. Internal dose integrates all metal-metal interactions in solution and during uptake into the organism, thereby providing a more direct metric describing toxicity.


Subject(s)
Araceae , Metals , Copper/toxicity , Kinetics , Ligands
8.
Ecotoxicol Environ Saf ; 136: 92-103, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27825051

ABSTRACT

In this study a total of 30 street dusts and 10 surface soils were collected in the central district of Tehran and analyzed for major potentially toxic metals. Street dust was found to be greatly enriched in Sb, Pb, Cu and Zn and moderately enriched in Cr, Mn, Mo and Ni. Contamination of Cu, Sb, Pb and Zn was clearly related to anthropogenic sources such as brake wear, tire dust, road abrasion and fossil fuel combustion. Spatial distribution of pollution load index in street dust suggested that industries located south-west of the city intensify street dust pollution. Microscopic studies revealed six dominant group of morphological structures in calculation of the exposurethe street dusts and surface soils, with respect to different geogenic and anthropogenic sources. The BCR (the European Community Bureau of Reference) sequential extraction results showed that Sb, Ni, Mo, As and Cr bonded to silicates and sulfide minerals were highly resistant to dissolution. In contrast, Zn, Cd, and Mn were mostly associated with the exchangeable phase and thus would be easily mobilized in the environment. Cu was the most abundant metal in the reducible fraction, indicating its adsorption to iron and manganese oxy-hydroxides. Pb was equally extracted from exchangeable and reducible fractions. Anthropogenic sources related to traffic apparently play a small role in Cr, Ni and Mo contamination and dispersed them as bioavailable forms but with reduced mobility and bioavailablity due to high potential of complexation and adsorption to organic matter and iron and manganese oxy-hydroxides. Calculated Hazard Index (HI) suggests ingestion as the most important pathway for the majority of PTMs in children and dermal contact as the main exposure route for Cr, Cd and Sb for adults. The HIs and fractionation pattern of elements revealed Pb as the sole element that bears potential health risk in street dust and surface soil.


Subject(s)
Air Pollutants/toxicity , Dust/analysis , Environmental Exposure , Metals/toxicity , Soil Pollutants/toxicity , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cities , Environmental Monitoring , Humans , Infant , Iran , Middle Aged , Risk Assessment , Young Adult
9.
Integr Environ Assess Manag ; 10(4): 493-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25045146

ABSTRACT

Lemna minor, a free-floating macrophyte, is used for biomonitoring of mine effluent quality under the Metal Mining Effluent Regulations (MMER) of the Environmental Effects Monitoring (EEM) program in Canada and is known to be sensitive to trace metals commonly discharged in mine effluents such as Ni. Environment Canada's standard toxicity testing protocol recommends frond count (FC) and dry weight (DW) as the 2 required toxicity endpoints-this is similar to other major protocols such as those by the US Environmental Protection Agency (USEPA) and the Organisation for Economic Co-operation and Development (OECD)-that both require frond growth or biomass endpoints. However, we suggest that similar to terrestrial plants, average root length (RL) of aquatic plants will be an optimal and relevant endpoint. As expected, results demonstrate that RL is the ideal endpoint based on the 3 criteria: accuracy (i.e., toxicological sensitivity to contaminant), precision (i.e., lowest variance), and ecological relevance (metal mining effluents). Roots are known to play a major role in nutrient uptake in conditions of low nutrient conditions-thus having ecological relevance to freshwater from mining regions. Root length was the most sensitive and precise endpoint in this study where water chemistry varied greatly (pH and varying concentrations of Ca, Mg, Na, K, dissolved organic carbon, and an anthropogenic organic contaminant, sodium isopropyl xanthates) to match mining effluent ranges. Although frond count was a close second, dry weight proved to be an unreliable endpoint. We conclude that toxicity testing for the floating macrophyte should require average RL measurement as a primary endpoint.


Subject(s)
Araceae/drug effects , Ecotoxicology/methods , Endpoint Determination/methods , Environmental Monitoring/methods , Mining , Plant Roots/growth & development , Water Pollutants, Chemical/toxicity , Araceae/growth & development , Plant Roots/drug effects , Trace Elements/toxicity
10.
Biol Trace Elem Res ; 145(1): 93-100, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21826609

ABSTRACT

This study evaluated Cd and Pb accumulation by castor bean (Ricinus communis cv. Guarany) plants grown in nutrient solution, aiming to assess the plant's ability and tolerance to grow in Cd- and Pb-contaminated solutions for phytoremediation purposes. The plants were grown in individual pots containing Hoagland and Arnon's nutrient solution with increasing concentrations of Cd and Pb. The production of root and shoot dry matter and their contents of Cd, Pb, Ca, Mg, Cu, Fe, Mn, and Zn were evaluated in order to calculate the translocation and bioaccumulation factors, as well as toxicity of Cd and Pb. Cadmium caused severe symptoms of phytotoxicity in the plant's root and shoot, but no adverse effect was observed for Pb. Castor bean is an appropriate plant to be used as indicator plant for Cd and tolerante for Pb in contaminated solution and it can be potentially used for phytoremediation of contaminated areas.


Subject(s)
Cadmium/metabolism , Lead/metabolism , Ricinus communis/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Cadmium/toxicity , Ricinus communis/drug effects , Ricinus communis/growth & development , Dose-Response Relationship, Drug , Lead/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil Pollutants/toxicity
11.
Environ Toxicol Chem ; 26(11): 2282-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17941730

ABSTRACT

Development of a terrestrial biotic ligand model (TBLM) for higher plants requires a root-Cu accumulation value that corresponds to the 50% inhibitory concentration (IC50). However, it is not yet known which of the two previously reported Cu-binding ligands on the root is associated with Cu toxicity. The aim of the present study was therefore to investigate the relationship between Cu binding to each ligand group and toxicity, so that the key toxicological site could be identified. To obtain accumulation and toxicity data that were not biased by limited Cu supply to the root, 2-d-old barley seedlings were exposed for 48 h to a range of free Cu ion activities (i.e., {Cu(2+)}) in simple exposure media buffered by nitrilotriacetic acid (NTA) or ethylenediaminetetraacetic acid (EDTA). Comparison of the amount of predicted root-bound Cu (calculated with the aqueous geochemical program PHREEQC) with root elongation data showed that toxicity likely resulted from Cu binding to low-affinity ligands, as the high-affinity ligands were approximately 99% saturated when a reduction in root elongation was first observed. For plants exposed to both NTA- and the EDTA-buffered {Cu(2+)} solutions, the root-Cu accumulation value corresponding to the IC50 was approximately 80 microg/g root dry weight, which is similar to the value obtained from previous work with wheat. The linear relationship between the amount of Cu bound to the low-affinity ligands and the percent root growth inhibition suggests that this relationship will be a robust predictor of Cu toxicity when incorporated into the TBLM, and applied to varied exposure scenarios. For the simple solutions used here, the TBLM-predicted and measured IC50 values were statistically indistinguishable.


Subject(s)
Chelating Agents/chemistry , Copper/toxicity , Hordeum/drug effects , Plant Roots/drug effects , Seedlings/drug effects , Buffers , Copper/pharmacokinetics , Dose-Response Relationship, Drug , Edetic Acid/chemistry , Hordeum/growth & development , Inhibitory Concentration 50 , Ligands , Models, Biological , Nitrilotriacetic Acid/chemistry , Plant Roots/growth & development , Seedlings/growth & development
12.
Article in English | MEDLINE | ID: mdl-17654148

ABSTRACT

The objective of the study was to compare in vivo estimates of Cd bioavailability in two diet materials (lettuce and durum wheat grain) with bioaccessibility estimates from three in vitro methods. For both dietary materials, the Cd was either incorporated during growth or applied topically as a soluble salt just prior to experimentation. Simulated gastric/intestinal digestion using a physiologically based extraction technique (PBET) solubilized less than 56% (lettuce) or 13% (grain) of the Cd that was either incorporated into the plant tissues during growth, or added to the plant tissues before experimentation, as Cd(NO3)2.H2O. Amended diets could not be distinguished from incorporated diets. More of the Cd solubilized from amended lettuce than from incorporated lettuce moved to the outside of MWCO 10 kD and 25 kD dialysis sacs; no difference between the amended and incorporated diets was observed for grain. The percentage of lettuce-Cd solubilized by the PBET and sorbed by Caco-2 cells was greater for incorporated than for amended lettuce; for Cd in grain, the reverse occurred. As expected, none of the in vitro estimates of bioaccessibility were the same percentage of Cd in the lettuce or grain as was measured as bioavailable in vivo. The in vitro assays all predicted that substantially less than 100% of the Cd in the foods would be bioavailable, as was identified in vivo, and simulating intestinal selectivity improved the comparison to in vivo. Some of the in vitro assays identified subtle differences between the diets (i.e., amended vs. incorporated) that were consistent with in vivo studies, and with speculated differences in Cd speciation; this suggests their potential usefulness for the study of modifiers to dietary Cd bioavailability.


Subject(s)
Cadmium/pharmacokinetics , Food Contamination/analysis , Intestinal Mucosa/metabolism , Models, Biological , Soil Pollutants/pharmacokinetics , Animals , Biological Availability , Caco-2 Cells , Digestion , Food Chain , Humans , Lactuca/growth & development , Rabbits , Triticum/growth & development
13.
Environ Toxicol Chem ; 25(3): 875-82, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16566174

ABSTRACT

To improve predictions of phytoavailable metal, the mechanistic bases of bioaccumulation and toxicity of metals to plants can be integrated into a biotic ligand model (BLM). There are a number of significant challenges to the application of the BLM to plants in soils, including reliable measurements of free ion concentrations for the metals of interest in rhizospheric soil solution, as well as other free ions, and concentrations of ligands to which the ions could bind; identification of the simplest model that can adequately predict root accumulation, and the potential for more complex models to add accuracy to the predictions; incorporating the dissociation of labile metal complexes (i.e., nonequilibrium processes) into a BLM, which is an equilibrium model; application of factors in a BLM that adequately describe translocation, in order to estimate metal concentration and speciation in plant shoots. The review concluded that the ability to estimate trace metal speciation in samples of soil solution are not likely to be better than within one order of magnitude of actual, thus this would be an additional source of uncertainty to the predictions of toxicity. Further, regulatory use of the BLM would require mechanistic bases; and, until root ligands associated with toxicity are well characterized, incorporating the ameliorative effects of competitive cations cannot be mechanistically based. As well, a functional BLM for soils with lower metal free ion activities will have to include kinetic data for metal-ligand complexes, as their association/disassociation may constitute a greater metal supply to roots than what would be predicted by the free ion concentration in soil solution. To apply the BLM to trophic transfer where metal concentration in plant shoots is the main focus, a probabilistic approach using experimentally determined root-shoot partitioning of metals might permit estimates of shoot accumulation from root data, to within one or two orders of magnitude.


Subject(s)
Biological Assay/methods , Environmental Monitoring/methods , Metals/analysis , Biological Availability , Cadmium/analysis , Ecosystem , Environment , Ligands , Models, Biological , Plants/metabolism , Soil , Soil Pollutants , Time Factors , Trace Elements/analysis
14.
Environ Toxicol Chem ; 22(5): 1155-61, 2003 May.
Article in English | MEDLINE | ID: mdl-12729228

ABSTRACT

The accumulation of Cd in durum wheat (Triticum turgidum) roots from hydroponic solutions, with the proportion of total Cd (8.9-445 nM Cd) as Cd2+ varied by the addition of citrate, was determined to test the free-ion model (FIM) of metal bioavailability for higher plants. Calcium, Mg, and K were also varied. Citrate enhanced root-Cd accumulation at higher Cd2+ concentrations but not lower relative to the same Cd2+ concentrations in solutions containing 0 mM citrate. Elevating Ca2+ and Mg2+ concentrations in the citrate solution to the same as those in control solutions alleviated some of the citrate-mediated enhancement but not all. Solutions containing 66% less Ca or Mg than control but the same Cd2+ concentration and no citrate also resulted in increased root Cd. Elevated K+ did not influence Cd accumulation. Regression relationships between root-Cd accumulation and total Cd in solution were similar for the control and pooled amended solutions, whereas they were different for root-Cd accumulation and solution Cd2+. These results contribute to the growing body of evidence that the FIM alone is likely insufficient to predict plant accumulation of metals from soils, although it may be a useful probe for the mechanistic bases of metal bioavailability.


Subject(s)
Cadmium/pharmacokinetics , Citric Acid/pharmacology , Plant Roots/metabolism , Triticum/metabolism , Biological Availability , Cadmium/chemistry , Calcium/chemistry , Calcium/pharmacology , Cations , Dose-Response Relationship, Drug , Magnesium/chemistry , Magnesium/pharmacology , Models, Biological , Potassium/chemistry , Potassium/pharmacology , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...