Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Behav Brain Res ; 466: 114982, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38582412

ABSTRACT

Creatine supplementation has been put forward as a possible aid to cognition, particularly for vegans, vegetarians, the elderly, sleep deprived and hypoxic individuals. However, previous narrative reviews have only provided limited support for these claims. This is despite the fact that research has shown that creatine supplementation can induce increased brain concentrations of creatine, albeit to a limited extent. We carried out a systematic review to examine the current state of affairs. The review supported claims that creatine supplementation can increases brain creatine content but also demonstrated somewhat equivocal results for effects on cognition. It does, however, provide evidence to suggest that more research is required with stressed populations, as supplementation does appear to significantly affect brain content. Issues with research design, especially supplementation regimens, need to be addressed. Future research must include measurements of creatine brain content.


Subject(s)
Brain , Cognition , Creatine , Dietary Supplements , Creatine/metabolism , Creatine/administration & dosage , Creatine/pharmacology , Humans , Cognition/drug effects , Cognition/physiology , Brain/metabolism , Brain/drug effects , Animals
2.
J Strength Cond Res ; 36(5): 1297-1303, 2022 May 01.
Article in English | MEDLINE | ID: mdl-32398631

ABSTRACT

ABSTRACT: Vine, CA, Coakley, SL, Blacker, SD, Doherty, J, Hale, B, Walker, EF, Rue, CA, Lee, BJ, Flood, TR, Knapik, JJ, Jackson, S, Greeves, JP, and Myers, SD. Accuracy of metabolic cost predictive equations during military load carriage. J Strength Cond Res 36(5): 1297-1303, 2022-To quantify the accuracy of 5 equations to predict the metabolic cost of load carriage under ecologically valid military speed and load combinations. Thirty-nine male serving infantry soldiers completed thirteen 20-minute bouts of overground load carriage comprising 2 speeds (2.5 and 4.8 km·h-1) and 6 carried equipment load combinations (25, 30, 40, 50, 60, and 70 kg), with 22 also completing a bout at 5.5 km·h-1 carrying 40 kg. For each speed-load combination, the metabolic cost was measured using the Douglas bag technique and compared with the metabolic cost predicted from 5 equations; Givoni and Goldman, 1971 (GG), Pandolf et al. 1997 (PAN), Santee et al. 2001 (SAN), American College of Sports Medicine 2013 (ACSM), and the Minimum-Mechanics Model (MMM) by Ludlow and Weyand, 2017. Comparisons between measured and predicted metabolic cost were made using repeated-measures analysis of variance and limits of agreement. All predictive equations, except for PAN, underpredicted the metabolic cost for all speed-load combinations (p < 0.001). The PAN equation accurately predicted metabolic cost for 40 and 50 kg at 4.8 km·h-1 (p > 0.05), underpredicted metabolic cost for all 2.5 km·h-1 speed-load combinations as well as 25 and 30 kg at 4.8 km·h-1, and overpredicted metabolic cost for 60 and 70 kg at 4.8 km·h-1 (p < 0.001). Most equations (GG, SAN, ACSM, and MMM) underpredicted metabolic cost while one (PAN) accurately predicted at moderate loads and speeds, but overpredicted or underpredicted at other speed-load combinations. Our findings indicate that caution should be applied when using these predictive equations to model military load carriage tasks.


Subject(s)
Military Personnel , Sports , Energy Metabolism , Humans , Male , Walking , Weight-Bearing
6.
Physiol Behav ; 188: 103-107, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29408319

ABSTRACT

Recent research has examined the effect that undertaking a cognitively fatiguing task for ≤90 min has on subsequent physical performance. Cognitive fatigue is claimed to affect subsequent physical performance by inducing energy depletion in the brain, depletion of brain catecholamine neurotransmitters or changes in motivation. Observation of the psychophysiology and neurochemistry literature questions the ability of 90 min' cognitive activity to deplete energy or catecholamine resources. The purpose of this study, therefore, was to examine the evidence for cognitive fatigue having an effect on subsequent physical performance. A systematic, meta-analytic review was undertaken. We found a small but significant pooled effect size based on comparison between physical performance post-cognitive fatigue compared to post-control (g = -0.27, SE = -0.12, 95% CI -0.49 to -0.04, Z(10) = -2.283, p < 0.05). However, the results were not heterogenous (Q(10) = 2.789, p > 0.10, Τ2 < 0.001), suggesting that the pooled effect size does not amount to a real effect and differences are due to random error. No publication bias was evident (Kendall's τ = -0.07, p > 0.05). Thus, the results are somewhat contradictory. The pooled effect size shows a small but significant negative effect of cognitive fatigue, however tests of heterogeneity show that the results are due to random error. Future research should use neuroscientific tests to ensure that cognitive fatigue has been achieved.


Subject(s)
Cognition/physiology , Fatigue/physiopathology , Fatigue/rehabilitation , Physical Functional Performance , Humans
7.
Int J Dev Disabil ; 65(3): 152-161, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-34141336

ABSTRACT

Objectives: Drumming may have therapeutic and learning benefits but there exists little causal evidence regarding the benefits for children with emotional and behavioral difficulties (EBD) such as Autistic Spectrum Disorder. Methods: Six EBD pupils (EBD Drum) and six peers (Peer Drum) were given 2, 30-min rock drumming lessons per week, over 5 weeks. Six matched individuals received no drumming instruction (3 = EBD Control; 3 = Peer Control). An exploratory, mixed-methods analysis was used to explore quantitative changes in skills and qualitative perspectives of the teaching staff. All pupils were tested two times (pretest and posttest) on drumming ability and Motor skills (Movement Assessment Battery for Children, version 2). Teacher's rating of social behavior (Strength and Difficulties Questionnaire; SDQ) was tested two times (pretest and retention). Results: Significant differences in total SDQ difficulties between the four groups (χ2(3) = 8.210, p = 0.042) and the hyperactivity subscale (χ2(3) = 10.641, p = 0.014) were observed. The EBD Drum group had greater reductions in total difficulties compared to the Peer Drum (p = 0.009) group and specifically greater reductions in hyperactivity compared to Peer Drum (p = 0.046) and the EBD Control (p = 0.006) group. In follow-up interviews, staff spoke positively about changes in pupil's attitudes toward learning and social confidence. Conclusions: The positive changes to social and behavioral skills reported in this pilot study are similar to those recorded for other music modalities.

8.
Neurosci Biobehav Rev ; 74(Pt A): 225-232, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28111267

ABSTRACT

A systematic meta-regression analysis of the effects of acute hypoxia on the performance of central executive and non-executive tasks, and the effects of the moderating variables, arterial partial pressure of oxygen (PaO2) and hypobaric versus normobaric hypoxia, was undertaken. Studies were included if they were performed on healthy humans; within-subject design was used; data were reported giving the PaO2 or that allowed the PaO2 to be estimated (e.g. arterial oxygen saturation and/or altitude); and the duration of being in a hypoxic state prior to cognitive testing was ≤6days. Twenty-two experiments met the criteria for inclusion and demonstrated a moderate, negative mean effect size (g=-0.49, 95% CI -0.64 to -0.34, p<0.001). There were no significant differences between central executive and non-executive, perception/attention and short-term memory, tasks. Low (35-60mmHg) PaO2 was the key predictor of cognitive performance (R2=0.45, p<0.001) and this was independent of whether the exposure was in hypobaric hypoxic or normobaric hypoxic conditions.


Subject(s)
Cognition , Hypoxia , Acute Disease , Altitude , Humans , Oxygen , Regression Analysis
9.
Physiol Behav ; 141: 180-9, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25582516

ABSTRACT

The primary purpose of this study was to examine, using meta-analytical measures, whether research into the performance of whole-body, psychomotor tasks following moderate and heavy exercise demonstrates an inverted-U effect. A secondary purpose was to compare the effects of acute exercise on tasks requiring static maintenance of posture versus dynamic, ballistic skills. Moderate intensity exercise was determined as being between 40% and 79% maximum power output (WMAX) or equivalent, while ≥80% WMAX was considered to be heavy. There was a significant difference (Zdiff=4.29, p=0.001, R(2)=0.42) between the mean effect size for moderate intensity exercise (g=0.15) and that for heavy exercise size (g=-0.86). These data suggest a catastrophe effect during heavy exercise. Mean effect size for static tasks (g=-1.24) was significantly different (Zdiff=3.24, p=0.001, R(2)=0.90) to those for dynamic/ballistic tasks (g=-0.30). The result for the static versus dynamic tasks moderating variables point to perception being more of an issue than peripheral fatigue for maintenance of static posture. The difference between this result and those found in meta-analyses examining the effects of acute exercise on cognition shows that, when perception and action are combined, the complexity of the interaction induces different effects to when cognition is detached from motor performance.


Subject(s)
Exercise/physiology , Psychomotor Performance/physiology , Humans
10.
Brain Cogn ; 80(3): 338-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23064033

ABSTRACT

The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g=0.14, p<0.01) on cognition. Examination of the comparison between speed and accuracy dependent variables showed that speed accounted for most of the effect. For speed, moderate intensity exercise demonstrated a significantly larger mean effect size than those for low and high intensities. For speed of processing during moderate intensity exercise, central executive tasks showed a larger effect size than recall and alertness/attention tasks; and mean effect size for counterbalanced or randomized studies was significantly greater than for studies in which a pre-exercise followed by during or post-exercise protocol was used. There was no significant difference between mean effect sizes when testing took place post-exercise compared to during exercise for speed but accuracy studies demonstrated a significantly larger mean effect size post-exercise. It was concluded that increased arousal during moderate intensity exercise resulted in faster speed of processing. The very limited effect on accuracy may be due to the failure to choose tests which are complex enough to measure exercise-induced changes in accuracy of performance.


Subject(s)
Cognition/physiology , Exercise/physiology , Physical Exertion/physiology , Reaction Time/physiology , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Problem Solving , Reproducibility of Results , Young Adult
11.
Physiol Behav ; 102(3-4): 421-8, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21163278

ABSTRACT

The purpose of this study was to compare, using meta-analytic techniques, the effect of acute, intermediate intensity exercise on the speed and accuracy of performance of working memory tasks. It was hypothesized that acute, intermediate intensity exercise would have a significant beneficial effect on response time and that effect sizes for response time and accuracy data would differ significantly. Random-effects meta-analysis showed a significant, beneficial effect size for response time, g=-1.41 (p<0.001) but a significant detrimental effect size, g=0.40 (p<0.01), for accuracy. There was a significant difference between effect sizes (Z(diff)=3.85, p<0.001). It was concluded that acute, intermediate intensity exercise has a strong beneficial effect on speed of response in working memory tasks but a low to moderate, detrimental one on accuracy. There was no support for a speed-accuracy trade-off. It was argued that exercise-induced increases in brain concentrations of catecholamines result in faster processing but increases in neural noise may negatively affect accuracy.


Subject(s)
Exercise/physiology , Memory, Short-Term/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Attention/physiology , Cognition/physiology , Humans , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...