Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 13: 325, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25130064

ABSTRACT

BACKGROUND: The goal of malaria elimination faces numerous challenges. New tools are required to support the scale up of interventions and improve national malaria programme capacity to conduct detailed surveillance. This study investigates the cost factors influencing the development and implementation of a spatial decision support system (SDSS) for malaria elimination in the two elimination provinces of Isabel and Temotu, Solomon Islands. METHOD: Financial and economic costs to develop and implement a SDSS were estimated using the Solomon Islands programme's financial records. Using an ingredients approach, verified by stakeholders and operational reports, total costs for each province were quantified. A budget impact sensitivity analysis was conducted to investigate the influence of variations in standard budgetary components on the costs and to identify potential cost savings. RESULTS: A total investment of US$ 96,046 (2012 constant dollars) was required to develop and implement the SDSS in two provinces (Temotu Province US$ 49,806 and Isabel Province US$ 46,240). The single largest expense category was for computerized equipment totalling approximately US$ 30,085. Geographical reconnaissance was the most expensive phase of development and implementation, accounting for approximately 62% of total costs. Sensitivity analysis identified different cost factors between the provinces. Reduced equipment costs would deliver a budget saving of approximately 10% in Isabel Province. Combined travel costs represented the greatest influence on the total budget in the more remote Temotu Province. CONCLUSION: This study provides the first cost analysis of an operational surveillance tool used specifically for malaria elimination in the South-West Pacific. It is demonstrated that the costs of such a decision support system are driven by specialized equipment and travel expenses. Such factors should be closely scrutinized in future programme budgets to ensure maximum efficiencies are gained and available resources are allocated effectively.


Subject(s)
Decision Support Systems, Management/economics , Decision Support Techniques , Epidemiologic Methods , Malaria/epidemiology , Malaria/prevention & control , Costs and Cost Analysis , Humans , Melanesia/epidemiology
2.
Malar J ; 12: 108, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23514410

ABSTRACT

BACKGROUND: A high-resolution surveillance-response system has been developed within a geographic information system (GIS) to support malaria elimination in the Pacific. This paper examines the application of a GIS-based spatial decision support system (SDSS) to automatically locate and map the distribution of confirmed malaria cases, rapidly classify active transmission foci, and guide targeted responses in elimination zones. METHODS: Customized SDSS-based surveillance-response systems were developed in the three elimination provinces of Isabel and Temotu, Solomon Islands and Tafea, Vanuatu. Confirmed malaria cases were reported to provincial malaria offices upon diagnosis and updated into the respective SDSS as part of routine operations throughout 2011. Cases were automatically mapped by household within the SDSS using existing geographical reconnaissance (GR) data. GIS queries were integrated into the SDSS-framework to automatically classify and map transmission foci based on the spatiotemporal distribution of cases, highlight current areas of interest (AOI) regions to conduct foci-specific targeted response, and extract supporting household and population data. GIS simulations were run to detect AOIs triggered throughout 2011 in each elimination province and conduct a sensitivity analysis to calculate the proportion of positive cases, households and population highlighted in AOI regions of a varying geographic radius. RESULTS: A total of 183 confirmed cases were reported and mapped using the SDSS throughout 2011 and used to describe transmission within a target population of 90,354. Automatic AOI regions were also generated within each provincial SDSS identifying geographic areas to conduct response. 82.5% of confirmed cases were automatically geo-referenced and mapped at the household level, with 100% of remaining cases geo-referenced at a village level. Data from the AOI analysis indicated different stages of progress in each province, highlighting operational implications with regards to strategies for implementing surveillance-response in consideration of the spatiotemporal nature of cases as well as logistical and financial constraints of the respective programmes. CONCLUSIONS: Geospatial systems developed to guide Pacific Island malaria elimination demonstrate the application of a high resolution SDSS-based approach to support key elements of surveillance-response including understanding epidemiological variation within target areas, implementing appropriate foci-specific targeted response, and consideration of logistical constraints and costs.


Subject(s)
Epidemiological Monitoring , Malaria/epidemiology , Malaria/prevention & control , Topography, Medical , Animals , Communicable Disease Control/methods , Disease Eradication/methods , Humans , Malaria/transmission , Melanesia/epidemiology , Spatio-Temporal Analysis , Vanuatu/epidemiology
3.
Malar J ; 9: 289, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20961423

ABSTRACT

BACKGROUND: Geographical Reconnaissance (GR) operations using Personal Digital Assistants (PDAs) and Global Positioning Systems (GPS) have been conducted in the elimination provinces of Temotu, Solomon Islands and Tafea, Republic of Vanuatu. These operations aimed to examine modern approaches to GR to define the spatial distribution of target populations to support contemporary malaria elimination interventions. METHODS: Three GR surveys were carried out covering the outer islands of Temotu Province (October - November, 2008); Santa Cruz Island, Temotu Province (February 2009) and Tanna Island, Tafea Province (July - September 2009). Integrated PDA/GPS handheld units were used in the field to rapidly map and enumerate households, and collect associated population and household structure data to support priority elimination interventions, including bed net distribution, indoor residual spraying (IRS) and malaria case surveillance. Data were uploaded and analysed in customized Geographic Information System (GIS) databases to produce household distribution maps and generate relevant summary information pertaining to the GR operations. Following completion of field operations, group discussions were also conducted to review GR approaches and technology implemented. RESULTS: 10,459 households were geo-referenced and mapped. A population of 43,497 and 30,663 household structures were recorded during the three GR surveys. The spatial distribution of the population was concentrated in coastal village clusters. Survey operations were completed over a combined total of 77 field days covering a total land mass area of approximately 1103.2 km2. An average of 45 households, 118 structures and a population of 184 people were recorded per handheld device per day. Geo-spatial household distribution maps were also produced immediately following the completion of GR fieldwork. An overall high acceptability of modern GR techniques and technology was observed by both field operations staff and communities. CONCLUSION: GR implemented using modern techniques has provided an effective and efficient operational tool for rapidly defining the spatial distribution of target populations in designated malaria elimination zones in Solomon Islands and Vanuatu. The data generated are being used for the strategic implementation and scaling-up of priority interventions, and will be essential for establishing future surveillance using spatial decision support systems.


Subject(s)
Data Collection/methods , Health Services Needs and Demand , Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Computers, Handheld , Databases, Factual , Family Characteristics , Female , Geographic Information Systems , Geography , Humans , Infant , Infant, Newborn , Male , Melanesia/epidemiology , Middle Aged , Vanuatu/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...