Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Acta Neuropathol Commun ; 9(1): 101, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059134

ABSTRACT

Glioblastoma (GBM) displays marked cellular and metabolic heterogeneity that varies among cellular microenvironments within a tumor. Metabolic targeting has long been advocated as a therapy against many tumors including GBM, but how lipid metabolism is altered to suit different microenvironmental conditions and whether cancer stem cells (CSCs) have altered lipid metabolism are outstanding questions in the field. We interrogated gene expression in separate microenvironments of GBM organoid models that mimic the transition between nutrient-rich and nutrient-poor pseudopalisading/perinecrotic tumor zones using spatial-capture RNA-sequencing. We revealed a striking difference in lipid processing gene expression and total lipid content between diverse cell populations from the same patient, with lipid enrichment in hypoxic organoid cores and also in perinecrotic and pseudopalisading regions of primary patient tumors. This was accompanied by regionally restricted upregulation of hypoxia-inducible lipid droplet-associated (HILPDA) gene expression in organoid cores and pseudopalisading regions of clinical GBM specimens, but not lower-grade brain tumors. CSCs have low lipid droplet accumulation compared to non-CSCs in organoid models and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell activity. Targeted lipidomic analysis of multiple patient-derived models revealed a significant shift in lipid metabolism between GBM CSCs and non-CSCs, suggesting that lipid levels may not be simply a product of the microenvironment but also may be a reflection of cellular state. CSCs had decreased levels of major classes of neutral lipids compared to non-CSCs, but had significantly increased polyunsaturated fatty acid production due to high fatty acid desaturase (FADS1/2) expression which was essential to maintain CSC viability and self-renewal. Our data demonstrate spatially and hierarchically distinct lipid metabolism phenotypes occur clinically in the majority of patients, can be recapitulated in laboratory models, and may represent therapeutic targets for GBM.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Lipid Metabolism/physiology , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Tumor Microenvironment/physiology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplastic Stem Cells/pathology , Organoids/pathology , Tumor Cells, Cultured
2.
Cancer Discov ; 9(11): 1574-1589, 2019 11.
Article in English | MEDLINE | ID: mdl-31434712

ABSTRACT

Glioblastomas (GBM) are lethal brain tumors where poor outcome is attributed to cellular heterogeneity, therapeutic resistance, and a highly infiltrative nature. These characteristics are preferentially linked to GBM cancer stem cells (GSC), but how GSCs maintain their stemness is incompletely understood and the subject of intense investigation. Here, we identify a novel signaling loop that induces and maintains GSCs consisting of an atypical metalloproteinase, ADAMDEC1, secreted by GSCs. ADAMDEC1 rapidly solubilizes FGF2 to stimulate FGFR1 expressed on GSCs. FGFR1 signaling induces upregulation of ZEB1 via ERK1/2 that regulates ADAMDEC1 expression through miR-203, creating a positive feedback loop. Genetic or pharmacologic targeting of components of this axis attenuates self-renewal and tumor growth. These findings reveal a new signaling axis for GSC maintenance and highlight ADAMDEC1 and FGFR1 as potential therapeutic targets in GBM. SIGNIFICANCE: Cancer stem cells (CSC) drive tumor growth in many cancers including GBM. We identified a novel sheddase, ADAMDEC1, which initiates an FGF autocrine loop to promote stemness in CSCs. This loop can be targeted to reduce GBM growth.This article is highlighted in the In This Issue feature, p. 1469.


Subject(s)
ADAM Proteins/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction , Animals , Brain Neoplasms/genetics , Cell Line, Tumor , Feedback, Physiological , Female , Fibroblast Growth Factor 2/metabolism , Glioblastoma/genetics , Humans , MicroRNAs/genetics , Neoplasm Transplantation , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism
3.
Cell Rep ; 27(4): 1062-1072.e5, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31018124

ABSTRACT

Gap-junction-mediated cell-cell communication enables tumor cells to synchronize complex processes. We previously found that glioblastoma cancer stem cells (CSCs) express higher levels of the gap junction protein Cx46 compared to non-stem tumor cells (non-CSCs) and that this was necessary and sufficient for CSC maintenance. To understand the mechanism underlying this requirement, we use point mutants to disrupt specific functions of Cx46 and find that Cx46-mediated gap-junction coupling is critical for CSCs. To develop a Cx46 targeting strategy, we screen a clinically relevant small molecule library and identify clofazimine as an inhibitor of Cx46-specific cell-cell communication. Clofazimine attenuates proliferation, self-renewal, and tumor growth and synergizes with temozolomide to induce apoptosis. Although clofazimine does not cross the blood-brain barrier, the combination of clofazimine derivatives optimized for brain penetrance with standard-of-care therapies may target glioblastoma CSCs. Furthermore, these results demonstrate the importance of targeting cell-cell communication as an anti-cancer therapy.


Subject(s)
Connexin 43/physiology , Glioblastoma/pathology , Neoplastic Stem Cells/metabolism , Animals , Cell Communication/drug effects , Clofazimine/pharmacology , Connexin 43/antagonists & inhibitors , Connexin 43/genetics , DNA Mutational Analysis , Gap Junctions/physiology , Glioblastoma/metabolism , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Xenograft Model Antitumor Assays
4.
JCI Insight ; 3(21)2018 11 02.
Article in English | MEDLINE | ID: mdl-30385717

ABSTRACT

Glioblastoma (GBM) remains uniformly lethal, and despite a large accumulation of immune cells in the microenvironment, there is limited antitumor immune response. To overcome these challenges, a comprehensive understanding of GBM systemic immune response during disease progression is required. Here, we integrated multiparameter flow cytometry and mass cytometry TOF (CyTOF) analysis of patient blood to determine changes in the immune system among tumor types and over disease progression. Utilizing flow cytometry analysis in a cohort of 259 patients ranging from benign to malignant primary and metastatic brain tumors, we found that GBM patients had a significant elevation in myeloid-derived suppressor cells (MDSCs) in peripheral blood but not immunosuppressive Tregs. In GBM patient tissue, we found that increased MDSC levels in recurrent GBM portended poor prognosis. CyTOF analysis of peripheral blood from newly diagnosed GBM patients revealed that reduced MDSCs over time were accompanied by a concomitant increase in DCs. GBM patients with extended survival also had reduced MDSCs, similar to the levels of low-grade glioma (LGG) patients. Our findings provide a rationale for developing strategies to target MDSCs, which are elevated in GBM patients and predict poor prognosis.


Subject(s)
Brain Neoplasms/immunology , Cell Line/immunology , Glioblastoma/immunology , Myeloid-Derived Suppressor Cells/immunology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Cell Line/drug effects , Disease Progression , Female , Flow Cytometry/methods , Glioblastoma/pathology , Humans , Longitudinal Studies , Male , Myeloid-Derived Suppressor Cells/drug effects , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Survival Analysis , Tumor Microenvironment/drug effects
5.
Nat Commun ; 9(1): 578, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422613

ABSTRACT

Tumors adapt their phenotypes during growth and in response to therapies through dynamic changes in cellular processes. Connexin proteins enable such dynamic changes during development, and their dysregulation leads to disease states. The gap junction communication channels formed by connexins have been reported to exhibit tumor-suppressive functions, including in triple-negative breast cancer (TNBC). However, we find that connexin 26 (Cx26) is elevated in self-renewing cancer stem cells (CSCs) and is necessary and sufficient for their maintenance. Cx26 promotes CSC self-renewal by forming a signaling complex with the pluripotency transcription factor NANOG and focal adhesion kinase (FAK), resulting in NANOG stabilization and FAK activation. This FAK/NANOG-containing complex is not formed in mammary epithelial or luminal breast cancer cells. These findings challenge the paradigm that connexins are tumor suppressors in TNBC and reveal a unique function for Cx26 in regulating the core self-renewal signaling that controls CSC maintenance.


Subject(s)
Cell Self Renewal , Connexins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Nanog Homeobox Protein/metabolism , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/metabolism , Animals , Cell Line, Tumor , Connexin 26 , Female , Humans , MCF-7 Cells , Mammary Glands, Human/metabolism , Mice , Mice, SCID , Neoplasm Transplantation
6.
J Exp Med ; 214(9): 2715-2732, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-28838952

ABSTRACT

Effective targeting of cancer stem cells (CSCs) requires neutralization of self-renewal and chemoresistance, but these phenotypes are often regulated by distinct molecular mechanisms. Here we report the ability to target both of these phenotypes via CD55, an intrinsic cell surface complement inhibitor, which was identified in a comparative analysis between CSCs and non-CSCs in endometrioid cancer models. In this context, CD55 functions in a complement-independent manner and required lipid raft localization for CSC maintenance and cisplatin resistance. CD55 regulated self-renewal and core pluripotency genes via ROR2/JNK signaling and in parallel cisplatin resistance via lymphocyte-specific protein tyrosine kinase (LCK) signaling, which induced DNA repair genes. Targeting LCK signaling via saracatinib, an inhibitor currently undergoing clinical evaluation, sensitized chemoresistant cells to cisplatin. Collectively, our findings identify CD55 as a unique signaling node that drives self-renewal and therapeutic resistance through a bifurcating signaling axis and provides an opportunity to target both signaling pathways in endometrioid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , CD55 Antigens/physiology , Cell Self Renewal/physiology , Cisplatin/therapeutic use , Endometrial Neoplasms/physiopathology , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Endometrial Neoplasms/drug therapy , Female , Mice , Mice, SCID , Neoplasm Transplantation , Neoplastic Stem Cells/physiology , Signal Transduction
7.
Neurotherapeutics ; 14(2): 372-384, 2017 04.
Article in English | MEDLINE | ID: mdl-28374184

ABSTRACT

Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.


Subject(s)
Brain Neoplasms/physiopathology , Brain Neoplasms/therapy , Neoplastic Stem Cells/physiology , Adult , Brain Neoplasms/genetics , Child , Child, Preschool , Drug Resistance, Neoplasm , Epigenesis, Genetic , Humans , Tumor Microenvironment
8.
Cell Stem Cell ; 20(4): 450-461.e4, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28089910

ABSTRACT

Tumors contain hostile inflammatory signals generated by aberrant proliferation, necrosis, and hypoxia. These signals are sensed and acted upon acutely by the Toll-like receptors (TLRs) to halt proliferation and activate an immune response. Despite the presence of TLR ligands within the microenvironment, tumors progress, and the mechanisms that permit this growth remain largely unknown. We report that self-renewing cancer stem cells (CSCs) in glioblastoma have low TLR4 expression that allows them to survive by disregarding inflammatory signals. Non-CSCs express high levels of TLR4 and respond to ligands. TLR4 signaling suppresses CSC properties by reducing retinoblastoma binding protein 5 (RBBP5), which is elevated in CSCs. RBBP5 activates core stem cell transcription factors, is necessary and sufficient for self-renewal, and is suppressed by TLR4 overexpression in CSCs. Our findings provide a mechanism through which CSCs persist in hostile environments because of an inability to respond to inflammatory signals.


Subject(s)
Cell Self Renewal/immunology , Glioblastoma/immunology , Glioblastoma/pathology , Immune Evasion , Immunity, Innate , Neoplastic Stem Cells/pathology , Toll-Like Receptor 4/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins , Female , Humans , Mice , Models, Biological , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
9.
Stem Cells ; 34(8): 2026-39, 2016 08.
Article in English | MEDLINE | ID: mdl-27145382

ABSTRACT

Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039.


Subject(s)
Brain Neoplasms/immunology , Glioblastoma/immunology , Immune Evasion , Macrophage Migration-Inhibitory Factors/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Neoplastic Stem Cells/metabolism , Animals , Arginase/metabolism , Brain Neoplasms/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Survival/drug effects , Culture Media, Conditioned/pharmacology , Female , Glioblastoma/pathology , Humans , Immune Evasion/drug effects , Mice, Inbred C57BL , Mice, Nude , Myeloid-Derived Suppressor Cells/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Tumor Microenvironment/drug effects
10.
Oncotarget ; 7(21): 30511-22, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27105520

ABSTRACT

The mainstay of treatment for ovarian cancer is platinum-based cytotoxic chemotherapy. However, therapeutic resistance and recurrence is a common eventuality for nearly all ovarian cancer patients, resulting in poor median survival. Recurrence is postulated to be driven by a population of self-renewing, therapeutically resistant cancer stem cells (CSCs). A current limitation in CSC studies is the inability to interrogate their dynamic changes in real time. Here we utilized a GFP reporter driven by the NANOG-promoter to enrich and track ovarian CSCs. Using this approach, we identified a population of cells with CSC properties including enhanced expression of stem cell transcription factors, self-renewal, and tumor initiation. We also observed elevations in CSC properties in cisplatin-resistant ovarian cancer cells as compared to cisplatin-naïve ovarian cancer cells. CD49f, a marker for CSCs in other solid tumors, enriched CSCs in cisplatin-resistant and -naïve cells. NANOG-GFP enriched CSCs (GFP+ cells) were more resistant to cisplatin as compared to GFP-negative cells. Moreover, upon cisplatin treatment, the GFP signal intensity and NANOG expression increased in GFP-negative cells, indicating that cisplatin was able to induce the CSC state. Taken together, we describe a reporter-based strategy that allows for determination of the CSC state in real time and can be used to detect the induction of the CSC state upon cisplatin treatment. As cisplatin may provide an inductive stress for the stem cell state, future efforts should focus on combining cytotoxic chemotherapy with a CSC targeted therapy for greater clinical utility.


Subject(s)
Cell Self Renewal/genetics , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Promoter Regions, Genetic/genetics , Time-Lapse Imaging/methods , Transplantation, Heterologous
11.
Neuro Oncol ; 18(5): 656-66, 2016 05.
Article in English | MEDLINE | ID: mdl-26374689

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) provide an additional layer of complexity for tumor models and targets for therapeutic development. The balance between CSC self-renewal and differentiation is driven by niche components including adhesion, which is a hallmark of stemness. While studies have demonstrated that the reduction of adhesion molecules, such as integrins and junctional adhesion molecule-A (JAM-A), decreases CSC maintenance. The molecular circuitry underlying these interactions has yet to be resolved. METHODS: MicroRNA screening predicted that microRNA-145 (miR-145) would bind to JAM-A. JAM-A overexpression in CSCs was evaluated both in vitro (proliferation and self-renewal) and in vivo (intracranial tumor initiation). miR-145 introduction into CSCs was similarly assessed in vitro. Additionally, The Cancer Genome Atlas dataset was evaluated for expression levels of miR-145 and overall survival of the different molecular groups. RESULTS: Using patient-derived glioblastoma CSCs, we confirmed that JAM-A is suppressed by miR-145. CSCs expressed low levels of miR-145, and its introduction decreased self-renewal through reductions in AKT signaling and stem cell marker (SOX2, OCT4, and NANOG) expression; JAM-A overexpression rescued these effects. These findings were predictive of patient survival, with a JAM-A/miR-145 signature robustly predicting poor patient prognosis. CONCLUSIONS: Our results link CSC-specific niche signaling to a microRNA regulatory network that is altered in glioblastoma and can be targeted to attenuate CSC self-renewal.


Subject(s)
Brain Neoplasms/pathology , Cell Adhesion Molecules/metabolism , Cell Adhesion/physiology , Glioblastoma/pathology , MicroRNAs/metabolism , Neoplastic Stem Cells/pathology , Receptors, Cell Surface/metabolism , Animals , Brain Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Heterografts , Humans , Immunoblotting , Mice , Neoplastic Stem Cells/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Tumor Cells, Cultured
12.
Cancer Cell ; 28(4): 441-455, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26461092

ABSTRACT

Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progenitors. Direct interrogation of iron uptake demonstrated that CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin, two core iron regulators, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable dependence.


Subject(s)
Brain Neoplasms/pathology , Ferritins/metabolism , Glioblastoma/pathology , Iron/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Transferrin/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cells, Cultured , Embryonic Stem Cells , Epigenesis, Genetic , Ferritins/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , Receptors, Transferrin/genetics , Sequence Analysis, RNA , Signal Transduction , Transferrin/metabolism
13.
Oncotarget ; 6(31): 31508-21, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26375552

ABSTRACT

Leukemia encompasses several hematological malignancies with shared phenotypes that include rapid proliferation, abnormal leukocyte self-renewal, and subsequent disruption of normal hematopoiesis. While communication between leukemia cells and the surrounding stroma supports tumor survival and expansion, the mechanisms underlying direct leukemia cell-cell communication and its contribution to tumor growth are undefined. Gap junctions are specialized intercellular connections composed of connexin proteins that allow free diffusion of small molecules and ions directly between the cytoplasm of adjacent cells. To characterize homotypic leukemia cell communication, we employed in vitro models for both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and measured gap junction function through dye transfer assays. Additionally, clinically relevant gap junction inhibitors, carbenoxolone (CBX) and 1-octanol, were utilized to uncouple the communicative capability of leukemia cells. Furthermore, a qRT-PCR screen revealed several connexins with higher expression in leukemia cells compared with normal hematopoietic stem cells. Cx25 was identified as a promising adjuvant therapeutic target, and Cx25 but not Cx43 reduction via RNA interference reduced intercellular communication and sensitized cells to chemotherapy. Taken together, our data demonstrate the presence of homotypic communication in leukemia through a Cx25-dependent gap junction mechanism that can be exploited for the development of anti-leukemia therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Communication/drug effects , Connexins/metabolism , Drug Resistance, Neoplasm/drug effects , Gap Junctions/drug effects , Leukemia, Myeloid, Acute/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Apoptosis/drug effects , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Connexins/antagonists & inhibitors , Connexins/genetics , Fluorescent Antibody Technique , Hematopoietic Stem Cells/drug effects , Humans , Immunoenzyme Techniques , Jurkat Cells , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
14.
Cell Rep ; 11(7): 1031-42, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25959821

ABSTRACT

The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.


Subject(s)
Brain Neoplasms/pathology , Connexin 43/metabolism , Connexins/metabolism , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Communication/physiology , Fluorescent Antibody Technique , Gap Junctions/metabolism , Glioblastoma/metabolism , Heterografts , Humans , Immunoblotting , Membrane Potentials/physiology , Neoplastic Stem Cells/metabolism , Patch-Clamp Techniques , Polymerase Chain Reaction
15.
Stem Cells ; 33(7): 2114-2125, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25827713

ABSTRACT

Advanced cancers display cellular heterogeneity driven by self-renewing, tumorigenic cancer stem cells (CSCs). The use of cell lines to model CSCs is challenging due to the difficulty of identifying and isolating cell populations that possess differences in self-renewal and tumor initiation. To overcome these barriers in triple-negative breast cancer (TNBC), we developed a CSC system using a green fluorescent protein (GFP) reporter for the promoter of the well-established pluripotency gene NANOG. NANOG-GFP+ cells gave rise to both GFP+ and GFP(-) cells, and GFP+ cells possessed increased levels of the embryonic stem cell transcription factors NANOG, SOX2, and OCT4 and elevated self-renewal and tumor initiation capacities. GFP+ cells also expressed mesenchymal markers and demonstrated increased invasion. Compared with the well-established CSC markers CD24(-) /CD44(+) , CD49f, and aldehyde dehydrogenase (ALDH) activity, our NANOG-GFP reporter system demonstrated increased enrichment for CSCs. To explore the utility of this system as a screening platform, we performed a flow cytometry screen that confirmed increased CSC marker expression in the GFP+ population and identified new cell surface markers elevated in TNBC CSCs, including junctional adhesion molecule-A (JAM-A). JAM-A was highly expressed in GFP+ cells and patient-derived xenograft ALDH+ CSCs compared with the GFP(-) and ALDH(-) cells, respectively. Depletion of JAM-A compromised self-renewal, whereas JAM-A overexpression induced self-renewal in GFP(-) cells. Our data indicate that we have defined and developed a robust system to monitor differences between CSCs and non-CSCs in TNBC that can be used to identify CSC-specific targets for the development of future therapeutic strategies.


Subject(s)
Genes, Reporter/genetics , Green Fluorescent Proteins/metabolism , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID
16.
Neuro Oncol ; 17(3): 361-71, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25416826

ABSTRACT

BACKGROUND: Malignant gliomas are complex systems containing a number of factors that drive tumor initiation and progression, including genetic aberrations that lead to extensive cellular heterogeneity within the neoplastic compartment. Mouse models recapitulate these genetic aberrations, but readily observable heterogeneity remains challenging. METHODS: To interrogate cellular heterogeneity in mouse glioma models, we utilized a replication-competent avian sarcoma-leukosis virus long terminal repeat with splice acceptor/tumor virus A (RCAS-tva) system to generate spontaneous mouse gliomas that contained a Sox2-enhanced green fluorescent protein (EGFP) reporter. Glial fibrillary acidic protein-tva mice were crossed with Sox2-EGFP mice, and tumors were initiated that contained a subpopulation of Sox2-EGFP-high cells enriched for tumor-initiating cell properties such as self-renewal, multilineage differentiation potential, and perivascular localization. RESULTS: Following implantation into recipient mice, Sox2-EGFP-high cells generated tumors containing Sox2-EGFP-high and Sox2-EGFP-low cells. Kinomic analysis of Sox2-EGFP-high cells revealed activation of known glioma signaling pathways that are strongly correlated with patient survival including platelet-derived growth factor receptor beta, phosphoinositide-3 kinase, and vascular endothelial growth factor. Our functional analysis identified active feline sarcoma (Fes) signaling in Sox2-EGFP-high cells. Fes negatively correlated with glioma patient survival and was coexpressed with Sox2-positive cells in glioma xenografts and primary patient-derived tissue. CONCLUSIONS: Our RCAS-tva/Sox2-EGFP model will empower closer examination of cellular heterogeneity and will be useful for identifying novel glioma pathways as well as testing preclinical treatment efficacy.


Subject(s)
Brain Neoplasms/pathology , Disease Models, Animal , Genes, Reporter , Glioma/pathology , Neoplastic Stem Cells/pathology , SOXB1 Transcription Factors/genetics , Animals , Avian Leukosis Virus/genetics , Avian Sarcoma Viruses/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/virology , Genetic Vectors , Glioma/genetics , Glioma/metabolism , Glioma/virology , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Transgenic , Neoplastic Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Signal Transduction , Tumor Cells, Cultured
17.
Stem Cells ; 32(7): 1746-58, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24737733

ABSTRACT

Glioblastoma (GBM) contains a self-renewing, tumorigenic cancer stem cell (CSC) population which contributes to tumor propagation and therapeutic resistance. While the tumor microenvironment is essential to CSC self-renewal, the mechanisms by which CSCs sense and respond to microenvironmental conditions are poorly understood. Scavenger receptors are a broad class of membrane receptors well characterized on immune cells and instrumental in sensing apoptotic cellular debris and modified lipids. Here, we provide evidence that CSCs selectively use the scavenger receptor CD36 to promote their maintenance using patient-derived CSCs and in vivo xenograft models. CD36 expression was observed in GBM cells in addition to previously described cell types including endothelial cells, macrophages, and microglia. CD36 was enriched in CSCs and was able to functionally distinguish self-renewing cells. CD36 was coexpressed with integrin alpha 6 and CD133, previously described CSC markers, and CD36 reduction resulted in concomitant loss of integrin alpha 6 expression, self-renewal, and tumor initiation capacity. We confirmed oxidized phospholipids, ligands of CD36, were present in GBM and found that the proliferation of CSCs, but not non-CSCs, increased with exposure to oxidized low-density lipoprotein. CD36 was an informative biomarker of malignancy and negatively correlated to patient prognosis. These results provide a paradigm for CSCs to thrive by the selective enhanced expression of scavenger receptors, providing survival, and metabolic advantages.


Subject(s)
Brain Neoplasms/metabolism , CD36 Antigens/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Animals , Brain Neoplasms/mortality , Brain Neoplasms/pathology , CD36 Antigens/genetics , Cell Proliferation , Disease Progression , Female , Gene Expression , Glioblastoma/mortality , Glioblastoma/pathology , Kaplan-Meier Estimate , Lipoproteins, LDL/physiology , Mice, Nude , Neoplasm Transplantation , Tumor Cells, Cultured
18.
CNS Oncol ; 2(4): 319-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24379973

ABSTRACT

Our understanding of the complexity of nervous system cancers has been enhanced through the incorporation of cellular heterogeneity into tumor models, with cellular subsets displaying stem cell characteristics. Advanced cancers such as glioblastoma are organized in a hierarchy with cancer stem cells at the apex. Cancer stem cells are functionally defined by their ability to self-renew and propagate tumors similar to the parental tumors from which they are derived. We will discuss advances in cancer stem cells, including the ability to prospectively isolate and interrogate cancer stem cells, by defining molecular mechanisms responsible for the tumor maintenance and growth. While the field of cancer stem cell biology is relatively young, continued elucidation of the tumor hierarchy holds promise for the development of novel patient therapies.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Models, Biological , Neoplastic Stem Cells/physiology , Animals , Humans
19.
Trends Neurosci ; 35(10): 619-28, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22784557

ABSTRACT

The dynamic relation between stem cells and their niche governs self-renewal and progenitor cell deployment. The chemokine CXCL12 (C-X-C motif ligand 12) and its signaling receptor CXCR4 (C-X-C motif receptor 4) represent an important pathway that regulates homing and maintenance of stem cells in neural niches. Neural stem cells (NSCs) reside in specific niches where communication with blood vessels is regulated by CXCL12. In neurodegenerative diseases and brain tumors, reactive vasculature forms in response to diseased tissues to create new niches that secrete CXCL12, enhancing the recruitment of neural progenitor cells (NPCs) to lesion sites via long-range migration. These observations suggest that the CXCL12-CXCR4 axis maintains NSCs and serves as an emergent salvage signal for initiating endogenous stem cell-based tissue repair.


Subject(s)
Chemokine CXCL12/physiology , Neural Stem Cells/physiology , Neurodegenerative Diseases/physiopathology , Neurogenesis/physiology , Receptors, CXCR4/physiology , Animals , Chemokine CXCL12/metabolism , Disease Models, Animal , Humans , Models, Biological , Neural Stem Cells/metabolism , Signal Transduction/physiology
20.
Cell Adh Migr ; 6(4): 346-55, 2012.
Article in English | MEDLINE | ID: mdl-22796941

ABSTRACT

Tumors contain a vastly complicated cellular network that relies on local communication to execute malignant programs. The molecular cues that are involved in cell-cell adhesion orchestrate large-scale tumor behaviors such as proliferation and invasion. We have recently begun to appreciate that many tumors contain a high degree of cellular heterogeneity and are organized in a cellular hierarchy, with a cancer stem cell (CSC) population identified at the apex in multiple cancer types. CSCs reside in unique microenvironments or niches that are responsible for directing their behavior through cellular interactions between CSCs and stromal cells, generating a malignant social network. Identifying cell-cell adhesion mechanisms in this network has implications for the basic understanding of tumorigenesis and the development of more effective therapies. In this review, we will discuss our current understanding of cell-cell adhesion mechanisms used by CSCs and how these local interactions have global consequences for tumor biology.


Subject(s)
Cell Adhesion , Cell Communication , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/physiology , Epithelial-Mesenchymal Transition , Extracellular Matrix/metabolism , Humans , Intercellular Junctions/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Neoplastic Stem Cells/physiology , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...