Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 12: 723476, 2021.
Article in English | MEDLINE | ID: mdl-34659089

ABSTRACT

Introduction: Up to 27% of individuals undergoing subthalamic nucleus deep brain stimulation (STN-DBS) have a genetic form of Parkinson's disease (PD). Glucocerebrosidase (GBA) mutation carriers, compared to sporadic PD, present with a more aggressive disease, less asymmetry, and fare worse on cognitive outcomes with STN-DBS. Evaluating STN intra-operative local field potentials provide the opportunity to assess and compare symmetry between GBA and non-GBA mutation carriers with PD; thus, providing insight into genotype and STN physiology, and eligibility for and programming of STN-DBS. The purpose of this pilot study was to test differences in left and right STN resting state beta power in non-GBA and GBA mutation carriers with PD. Materials and Methods: STN (left and right) resting state local field potentials were recorded intraoperatively from 4 GBA and 5 non-GBA patients with PD while off medication. Peak beta power expressed as a ratio to total beta power (peak beta ratio) was compared between STN hemispheres and groups while co-varying for age, age of disease onset, and disease severity. Results: Peak beta ratio was significantly different between the left and the right STN for the GBA group (p < 0.01) but not the non-GBA group (p = 0.56) after co-varying for age, age of disease onset, and disease severity. Discussion: Peak beta ratio in GBA mutation carriers was more asymmetric compared with non-mutation carriers and this corresponded with the degree of clinical asymmetry as measured by rating scales. This finding suggests that GBA mutation carriers have a physiologic signature that is distinct from that found in sporadic PD.

2.
Am J Respir Cell Mol Biol ; 60(1): 106-116, 2019 01.
Article in English | MEDLINE | ID: mdl-30134121

ABSTRACT

Patients with pulmonary arterial hypertension (PAH) can harbor mutations in several genes, most commonly in BMPR2. However, disease penetrance in patients with BMPR2 mutations is low. In addition, most patients do not carry known PAH gene mutations, suggesting that other factors determine susceptibility to PAH. To begin to identify additional genomic factors contributing to PAH pathogenesis, we exposed 32 mouse strains to chronic hypoxia. We found that the PL/J strain has extremely high right ventricular systolic pressure (RVSP; 86.58 mm Hg) but minimal lung remodeling. To identify potential genomic factors contributing to the high RVSP, RNAseq analysis of PL/J lung mRNAs and microRNAs (miRNAs) after hypoxia was performed, and it demonstrated that 4 of 43 upregulated miRNAs in the Dlk1-Dio3 imprinting region are predicted to target T cell marker mRNAs. These target mRNAs, as well as the numbers of T cells were downregulated. In addition, C5a and its receptor, C5AR1, were increased. Analysis of Rho-associated protein kinase (Rock) 2 mRNA expression, in the RhoA/Rock pathway, demonstrated a significant increase in PL/J. Inhibition of Rock2 ameliorated a portion of the elevated RVSP. In addition, we identified miR-150-5p as a potential regulator of Rock2 expression. In conclusion, we identified two possible pathways contributing to the hypoxia pulmonary hypertension phenotype of extreme RVSP elevation: aberrant T cell expression driven by hypoxia-induced miRNAs and increased expression of C5a and C5AR1. We suggest that the PL/J mouse will be a good model for seeking mechanism(s) of RVSP elevation in hypoxia-induced PAH.


Subject(s)
Biomarkers/analysis , Gene Expression Regulation , Hypertension, Pulmonary/etiology , Hypoxia/complications , MicroRNAs/genetics , Transcriptome , Animals , Gene Expression Profiling , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Male , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...