Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pituitary ; 24(3): 351-358, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33433890

ABSTRACT

CONTEXT: Somatostatin (SST) and dopamine (DA) inhibit growth hormone (GH) secretion and proliferation of GH-secreting pituitary adenomas (GHomas) through binding to SSTR2 and D2R receptors. Chimeric SST-DA compounds (Dopastatins) display increased potency in inhibiting GH secretion, as compared with individual SST or DA analogs (alone or combined). OBJECTIVE: To assess the efficacy of a second-generation dopastatin, TBR-065, in suppressing GH secretion from human GH- and GH/prolactin(PRL)-omas. DESIGN: We compared the ability of TBR-065 to inhibit GH secretion from primary cultures of human GH- or GH/PRLoma cells to that of the first generation dopastatin, TBR-760 (formerly BIM-23A760), octreotide (OCT) and cabergoline (CAB), the later either alone or combined. We investigated whether there was any impact of BIM-133, the metabolite of TBR-065, on the ability of TBR-065 to inhibit GH in these cultures. METHODS: 17 GH- and GH/PRLomas were included in this study. Inhibition of GH secretion by TBR-065, TBR-760, OCT and CAB (0.1 pM to 0.1 µM) was assessed over a period of 8 h. RESULTS: All tumors expressed SSTR2 and D2R mRNAs. GH suppression was higher with TBR-065 as compared with TBR-760 (Emax = 57 ± 5.6% vs. 41.1 ± 12.5%, respectively, p < 0.001) or with OCT + CAB (Emax = 56.8 ± 7.2% vs. 44.4 ± 9.4%, p < 0.001). BIM-133 did not have any impact on the activity of TBR-065. CONCLUSION: TBR-065 has significantly improved efficacy in suppressing GH secretion as compared to current available therapies and may represent a new promising option for the treatment of acromegaly.


Subject(s)
Adenoma , Human Growth Hormone , Pituitary Neoplasms , Adenoma/drug therapy , Cabergoline , Dopamine , Humans , Octreotide/pharmacology , Pituitary Neoplasms/drug therapy , Receptors, Dopamine D2 , Receptors, Somatostatin/genetics , Somatostatin/pharmacology , Tumor Cells, Cultured
2.
Endocrinology ; 161(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32591776

ABSTRACT

TBR-760 (formerly BIM-23A760) is a chimeric dopamine (DA)-somatostatin (SST) compound with potent agonist activity at both DA type 2 (D2R) and SST type 2 (SSTR2) receptors. Studies have shown that chimeric DA-SST compounds are more efficacious than individual DA and/or SST analogues, either alone or combined, in inhibiting secretion from primary cultures of human somatotroph and lactotroph tumor cells. Nonfunctioning pituitary adenomas (NFPAs) express both D2R and SSTR2 and, consequently, may respond to TBR-760. We used a mouse model with the pro-opiomelanocortin (POMC) gene knocked out that spontaneously develops aggressive NFPAs. Genomic microarray and DA and SST receptor messenger RNA expression analysis indicate that POMC KO mouse tumors and human NFPAs have similar expression profiles, despite arising from different cell lineages, establishing POMC KO mice as a model for study of NFPAs. Treatment with TBR-760 for 8 weeks resulted in nearly complete inhibition of established tumor growth, whereas tumors from vehicle-treated mice increased in size by 890 ± 0.7%. Comparing TBR-760 with its individual DA and SST components, TBR-760 arrested tumor growth. Treatment with equimolar or 10×-higher doses of the individual SST or DA agonists, either alone or in combination, had no significant effect. One exception was the lower dose of DA agonist that induced modest suppression of tumor growth. Only the chimeric compound TBR-760 arrested tumor growth in this mouse model of NFPA. Further, significant tumor shrinkage was observed in 20% of the mice treated with TBR-760. These results support the development of TBR-760 as a therapy for patients with NFPA.


Subject(s)
Adenoma/drug therapy , Adenoma/pathology , Cell Proliferation/drug effects , Dopamine/analogs & derivatives , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/pathology , Somatostatin/analogs & derivatives , Adenoma/genetics , Animals , Cell Proliferation/genetics , Disease Models, Animal , Dopamine/pharmacology , Dopamine/therapeutic use , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Mice , Mice, Knockout , Microarray Analysis , Neoplasm Invasiveness , Pituitary Neoplasms/genetics , Pro-Opiomelanocortin/deficiency , Pro-Opiomelanocortin/genetics , Somatostatin/pharmacology , Somatostatin/therapeutic use
3.
Bioorg Med Chem ; 20(21): 6394-402, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23040895

ABSTRACT

The modulation of 11ß-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11ß-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11ß-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC(50) values in the 100 nM range. These compounds are also highly selective 11ß-HSD1 inhibitors with no activity against 11ß-HSD2 and 17ß-HSD1. Compound 15 (IC(50)=114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC(50)=280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Acetamides/pharmacology , Adamantane/analogs & derivatives , Adamantane/pharmacology , Enzyme Inhibitors/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Acetamides/chemical synthesis , Acetamides/chemistry , Adamantane/chemical synthesis , Adamantane/chemistry , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
4.
ChemMedChem ; 5(7): 1026-44, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20486152

ABSTRACT

11Beta-hydroxysteroid dehydrogenases (11beta-HSDs) are key enzymes regulating the pre-receptor metabolism of glucocorticoid hormones. The modulation of 11beta-HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Inhibition of tissue-specific glucocorticoid action by regulating 11beta-HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. A series of novel adamantyl ethanone compounds was identified as potent inhibitors of human 11beta-HSD1. The most active compounds identified (52, 62, 72, 92, 103 and 104) display potent inhibition of 11beta-HSD1 with IC(50) values in the 50-70 nM range. Compound 72 also proved to be metabolically stable when incubated with human liver microsomes. Furthermore, compound 72 showed very weak inhibitory activity for human cytochrome P450 enzymes and is therefore a candidate for in vivo studies. Comparison of the publicly available X-ray crystal structures of human 11beta-HSD1 led to docking studies of the potent compounds, revealing how these molecules may interact with the enzyme and cofactor.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Adamantane/analogs & derivatives , Benzamides/chemistry , Enzyme Inhibitors/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adamantane/chemical synthesis , Adamantane/chemistry , Adamantane/pharmacology , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Benzamides/chemical synthesis , Benzamides/pharmacology , Cell Line , Computer Simulation , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Microsomes, Liver/metabolism , Structure-Activity Relationship
5.
Peptides ; 30(10): 1892-900, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19646498

ABSTRACT

Melanocortin receptor agonists act in the brain to regulate food intake and body weight and, independently of these actions, affect insulin sensitivity. These experiments investigated the function of novel non-selective melanocortin receptor agonists (BIM-22493, BIM-22511) that cross the blood-brain barrier when administered peripherally. Treatment of diet induced obese C57BL/6J (B6) mice with melanocortin agonists administered peripherally improved obesity, hyperinsulinemia (approximately 50%) and fatty liver disease. Specificity of function was determined using B6 melanocortin-3 and melanocortin-4 receptor knockout mice (MC3RKO, MC4RKO). Chow fed MC4RKO but not MC3RKO used for these tests exhibited obesity, hyperinsulinemia and severe hepatosteatosis associated with increased expression of insulin-stimulated genes involved in lipogenesis. Reduced food intake associated with acute BIM-22493 treatment, and weight loss associated with 14 days of treatment with BIM-22511, required functional MC4R but not MC3R. However, while 14 days of treatment with BIM-22511 did not affect body weight and even increased cumulative food intake in MC4RKO, a significant reduction (approximately 50%) in fasting insulin was still observed. Despite lowering insulin, chronic treatment with BIM-22511 did not improve hepatosteatosis in MC4RKO, and did not affect hepatic lipogenic gene expression. Together, these results demonstrate that peripherally administered melanocortin receptor agonists regulate body weight, liver metabolism and glucose homeostasis through independent pathways. MC4R are necessary for melanocortin agonist-induced weight loss and improvements in liver metabolism, but are not required for improvements in hyperinsulinemia. Agonists with activity at MC4R improve glucose homeostasis at least partially by causing weight loss, however other melanocortin receptors may have potential for treating aberrations in glucose homeostasis associated with obesity.


Subject(s)
Receptor, Melanocortin, Type 3/agonists , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/genetics , alpha-MSH/analogs & derivatives , Animals , Diet , Eating , Energy Metabolism , Female , Glucose/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Weight Loss , alpha-MSH/pharmacology
8.
Cell Metab ; 8(6): 468-81, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19041763

ABSTRACT

Obesity and nutrient homeostasis are linked by mechanisms that are not fully elucidated. Here we describe a secreted protein, adropin, encoded by a gene, Energy Homeostasis Associated (Enho), expressed in liver and brain. Liver Enho expression is regulated by nutrition: lean C57BL/6J mice fed high-fat diet (HFD) exhibited a rapid increase, while fasting reduced expression compared to controls. However, liver Enho expression declines with diet-induced obesity (DIO) associated with 3 months of HFD or with genetically induced obesity, suggesting an association with metabolic disorders in the obese state. In DIO mice, transgenic overexpression or systemic adropin treatment attenuated hepatosteatosis and insulin resistance independently of effects on adiposity or food intake. Adropin regulated expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor gamma, a major regulator of lipogenesis. Adropin may therefore be a factor governing glucose and lipid homeostasis, which protects against hepatosteatosis and hyperinsulinemia associated with obesity.


Subject(s)
Blood Proteins/physiology , Energy Metabolism , Lipid Metabolism , Proteins/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Amino Acid Sequence , Animals , Base Sequence , Benzoates/chemistry , Benzoates/metabolism , Benzylamines/chemistry , Benzylamines/metabolism , Blood Proteins/genetics , Blood Proteins/metabolism , Cells, Cultured , DNA-Binding Proteins/agonists , DNA-Binding Proteins/metabolism , Fasting , Fatty Liver/metabolism , Female , Humans , Intercellular Signaling Peptides and Proteins , Leptin/metabolism , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Obesity/genetics , Obesity/metabolism , Orphan Nuclear Receptors , Peptides , Proteins/genetics , Proteins/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism
9.
Endocrinology ; 149(2): 827-35, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18039782

ABSTRACT

Chronic kidney disease (CKD) is associated with an increase in inflammatory cytokines and can result in cachexia with loss of muscle and fat stores. We previously demonstrated the efficacy of treating a model of cancer cachexia with ghrelin and a ghrelin receptor agonist. Currently, we examine a surgical model of CKD in rats, resulting in uremia and decreased accrual of lean body mass. Treatment with ghrelin and two ghrelin receptor agonists (BIM-28125 and BIM-28131) resulted in increased food intake and an improvement in lean body mass accrual that was related in part to a decrease in muscle protein degradation as assessed by muscle levels of the 14-kDa actin fragment resulting from cleaved actomyosin. Additionally, there was a decrease in circulating inflammatory cytokines in nephrectomized animals treated with ghrelin relative to saline treatment. Ghrelin-treated animals also had a decrease in the expression of IL-1 receptor in the brainstem and a decrease in expression of prohormone convertase-2, an enzyme involved in the processing of proopiomelanocortin to the anorexigenic peptide alpha-MSH. We conclude that ghrelin treatment in uremia results in improved lean mass accrual in part due to suppressed muscle proteolysis and possibly related to antiinflammatory effects.


Subject(s)
Body Weight/drug effects , Cachexia/drug therapy , Cytokines/blood , Ghrelin/pharmacology , Renal Insufficiency, Chronic/drug therapy , Absorptiometry, Photon , Animals , Cachexia/etiology , Cachexia/immunology , Cytokines/genetics , Dactinomycin/metabolism , Disease Models, Animal , Eating/drug effects , Gene Expression/drug effects , Growth Hormone/blood , Inflammation/blood , Inflammation/drug therapy , Inflammation/etiology , Insulin-Like Growth Factor I/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Nephrectomy , Neuropeptides/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred F344 , Receptors, Ghrelin/agonists , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/immunology
10.
Pituitary ; 10(3): 267-74, 2007.
Article in English | MEDLINE | ID: mdl-17587180

ABSTRACT

Glucocorticoids are important immunosuppressive hormones; these steroids also inhibit somatic growth by decreased growth hormone (GH) secretion and induced protein catabolism. The ability of ghrelin, the endogenous ligand for the GHS-1a receptor, to increase body weight is attributed to a combination of enhanced food intake, increased gastric emptying and increased food assimilation, coupled with potent GH releasing activity. The aim of the present study was to evaluate the ability of a full-length, metabolically stabilized ghrelin agonist, BIM-28125, to reverse the dexamethasone-induced decrease of growth rate of prepubertal Sprague-Dawley male rats. Twenty-one days old rats were randomly assigned to two treatment groups. Beginning on day 23 of age, 16 animals were treated ip either with saline or DEX (40 microg/kg/day). On day 33 after birth, these two groups were further subdivided and treated sc with either vehicle or BIM-28125 (80 nmol/kg, t.i.d.). On day 47 after birth, rats were killed and trunk blood was collected for hormone determinations. DEX significantly reduced final body weight and nose-anal length; BIM-28125 increased linear growth in saline-treated rats and reversed growth inhibition in DEX-treated rats. The inhibitory effects of DEX on somatic growth was paralleled by decreased 24 h food intake (FI), decreased food efficiency (FE) and lower plasma IGF-1 levels versus vehicle-treated rats. BIM-28125 induced an increase of FI, FE and plasma IGF-1 in saline-treated rats, and reversed the inhibitory effects of DEX. These preclinical results leads to the conclusion that BIM-28125 may represent a good tool to reverse the catabolic effects induced by glucocorticoids.


Subject(s)
Ghrelin/analogs & derivatives , Glucocorticoids/antagonists & inhibitors , Glucocorticoids/pharmacology , Growth/drug effects , Hormone Antagonists/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/growth & development , Animals , Blood Glucose/metabolism , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Eating/drug effects , Epididymis/drug effects , Epididymis/growth & development , Ghrelin/pharmacology , Humans , Insulin-Like Growth Factor I/metabolism , Male , Obesity/chemically induced , Obesity/pathology , Phosphatidylinositols/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Somatotropin/drug effects , Recombinant Proteins/pharmacology
11.
Endocrinology ; 148(6): 3004-12, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17347304

ABSTRACT

Cancer cachexia is a debilitating syndrome of anorexia and loss of lean body mass that accompanies many malignancies. Ghrelin is an orexigenic hormone with a short half-life that has been shown to improve food intake and weight gain in human and animal subjects with cancer cachexia. We used a rat model of cancer cachexia and administered human ghrelin and a synthetic ghrelin analog BIM-28131 via continuous infusion using sc osmotic minipumps. Tumor-implanted rats receiving human ghrelin or BIM-28131 exhibited a significant increase in food consumption and weight gain vs. saline-treated animals. We used dual-energy x-ray absorptiometry scans to show that the increased weight was due to maintenance of lean mass vs. a loss of lean mass in saline-treated animals. Also, BIM-28131 significantly limited the loss of fat mass normally observed in tumor-implanted rats. We further performed real-time PCR analysis of the hypothalami and brainstems and found that ghrelin-treated animals exhibited a significant increase in expression of orexigenic peptides agouti-related peptide and neuropeptide Y in the hypothalamus and a significant decrease in the expression of IL-1 receptor-I transcript in the hypothalamus and brainstem. We conclude that ghrelin and a synthetic ghrelin receptor agonist improve weight gain and lean body mass retention via effects involving orexigenic neuropeptides and antiinflammatory changes.


Subject(s)
Body Composition/drug effects , Cachexia/etiology , Cachexia/pathology , Eating/drug effects , Neoplasms/complications , Peptide Hormones/pharmacology , Animals , Body Weight/drug effects , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Ghrelin , Growth Hormone/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Neoplasms/pathology , Rats , Rats, Inbred F344 , Tumor Burden/drug effects
12.
Neuroendocrinology ; 81(5): 339-49, 2005.
Article in English | MEDLINE | ID: mdl-16210868

ABSTRACT

Ghrelin, the natural ligand for the growth hormone secretagogue-1a (GHS-1a) receptor, has received a great deal of attention due to its ability to stimulate weight gain and the hope that an antagonist of the GHS-1a receptor could be a treatment for obesity. We have discovered an analog of full-length human ghrelin, BIM-28163, which fully antagonizes GHS-1a by binding to but not activating the receptor. We further demonstrate that BIM-28163 blocks ghrelin activation of the GHS-1a receptor, and inhibits ghrelin-induced GH secretion in vivo. Unexpectedly, however, BIM-28163 acts as an agonist with regard to stimulating weight gain. These results may suggest the presence of an unknown ghrelin receptor that modulates ghrelin actions on weight gain. In keeping with our results on growth hormone (GH) secretion, BIM-28163 acts as an antagonist of ghrelin-induced Fos protein immunoreactivity (Fos-IR) in the medial arcuate nucleus, an area involved in the ghrelin modulation of GH secretion. However, in the dorsal medial hypothalamus (DMH), a region associated with regulation of food intake, both ghrelin and BIM-28163 act as agonists to upregulate Fos-IR. The observation that ghrelin and BIM-28163 have different efficacies in inducing Fos-IR in the DMH, and that concomitant administration of ghrelin and an excess of BIM-28163 results in the same level of Fos-IR as BIM-28163 administered alone may demonstrate that in the DMH both ghrelin and BIM-28163 act via the same receptor. If so, it is unlikely that this receptor is GHS-1a. Collectively, our findings suggest that the action of ghrelin to stimulate increased weight gain may be mediated by a novel receptor other than GHS-1a, and further imply that GHS-1a may not be the appropriate target for anti-obesity strategies.


Subject(s)
Body Weight/drug effects , Brain/drug effects , Growth Hormone/metabolism , Peptide Hormones/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Area Under Curve , Behavior, Animal/drug effects , Binding, Competitive/drug effects , Brain/metabolism , CHO Cells/drug effects , Cell Count/methods , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Interactions , Feeding Behavior/drug effects , Ghrelin , Humans , Immunohistochemistry/methods , Iodine Isotopes/pharmacokinetics , Male , Oncogene Proteins v-fos/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin , Time Factors
13.
Eur J Endocrinol ; 151 Suppl 1: S71-5, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15339248

ABSTRACT

Ghrelin, the 28 amino acid peptide recently identified as the natural ligand for the growth hormone (GH) secretagogue (GHS) receptor, has multiple activities in addition to stimulation of GH secretion, including stimulation of feeding and weight gain. To utilize these actions for potential therapeutic benefit, we have produced analogs of human ghrelin with enhanced metabolic stability, affinity for the GHS receptor, and efficacy in stimulating weight gain. We have also discovered an analog of ghrelin, BIM-28163, that is an antagonist at the GHS receptor and that fully inhibits GHS receptor activation induced by native ghrelin. In vivo, BIM-28163 does not increase GH secretion but fully blocks ghrelin-induced GH secretion. In contrast, BIM-28163 acts as a full agonist with regard to the ghrelin actions of stimulating weight gain and food intake. These results suggest that a receptor other than the GHS receptor mediates the actions of ghrelin on feeding and weight gain. This concept is strengthened by our observation that at certain hypothalamic sites, BIM-28163 acts as an antagonist of ghrelin-induced neuronal activation, while at other sites, both ghrelin and BIM-28163 induce neuronal activation via the same receptor. Collectively, these results indicate the existence of a novel ghrelin receptor that may regulate the feeding activity of ghrelin. Using BIM-28163 as a tool to define the endogenous role of ghrelin in normal GH secretion, we have demonstrated that antagonism of the GHS receptor in normal rats does not impair the pulsatility of GH secretion but lowers the pulse amplitude and mean GH level. These results demonstrate that endogenous ghrelin acts to amplify the basic pattern of GH secretion established by the interplay of hypothalamic GH-releasing hormone and somatostatin. These studies demonstrate the feasibility of creating ghrelin analogs that are selective for specific activities, as well as their utility in dissecting the role of ghrelin in both normal physiology and specific pathologies.


Subject(s)
Peptide Hormones/antagonists & inhibitors , Peptide Hormones/pharmacology , Peptide Hormones/physiology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Eating/drug effects , Ghrelin , Growth Hormone/metabolism , Humans , Male , Peptide Hormones/therapeutic use , Rats , Receptors, Ghrelin , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...