Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(17): 4924-33, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25879382

ABSTRACT

The discrete wavelet transform (DWT) has found significant utility in process monitoring, filtering, and feature isolation of SEM, AFM, and optical images. Current use of the DWT for surface analysis assumes initial knowledge of the sizes of the features of interest in order to effectively isolate and analyze surface components. Current methods do not adequately address complex, heterogeneous surfaces in which features across multiple size ranges are of interest. Further, in situations where structure-to-property relationships are desired, the identification of features relevant for the function of the material is necessary. In this work, the DWT is examined as a tool for quantitative, length-scale specific surface metrology without prior knowledge of relevant features or length-scales. A new method is explored for determination of the best wavelet basis to minimize variation in roughness and skewness measurements with respect to change in position and orientation of surface features. It is observed that the size of the wavelet does not directly correlate with the size of features on the surface, and a method to measure the true length-scale specific roughness of the surface is presented. This method is applied to SEM and AFM images of non-precious metal catalysts, yielding new length-scale specific structure-to-property relationships for chemical speciation and fuel cell performance. The relationship between SEM and AFM length-scale specific roughness is also explored. Evidence is presented that roughness distributions of SEM images, as measured by the DWT, is representative of the true surface roughness distribution obtained from AFM.

2.
Phys Chem Chem Phys ; 15(20): 7768-76, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23598906

ABSTRACT

The effect of Zn on the CO adsorption and oxidation reaction is examined experimentally and theoretically on two PdZn catalysts with different compositions, namely the intermetallic 1:1 ß-PdZn and α-PdZn as a solid solution of 9 at% Zn in Pd. These bimetallic catalysts, made using an aerosol derived method, are homogeneous in phase and composition so that the measured reactivity excludes support effects. Both specific reactivities for CO oxidation on these two PdZn catalysts were measured. It was found that the initial rates are high and different between these catalysts, presumably due to the weakening of the CO adsorption and easier binding of oxygen to Pd sites modified by Zn. However, the rates decrease with time and become comparable to that on Pd at the steady state. With the help of density functional theory, it was suggested that the transient kinetics are due to the oxidation of Zn during the catalysis, which yields pure Pd where the reaction takes place.


Subject(s)
Alloys/chemistry , Carbon Monoxide/chemistry , Palladium/chemistry , Zinc/chemistry , Oxidation-Reduction
3.
Phys Chem Chem Phys ; 14(16): 5512-7, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22407419

ABSTRACT

This article reports the synthesis and performance of unsupported Ni(1-x)Zn(x) electrocatalysts for the oxidation of hydrazine in alkaline media. Characterization of these catalysts was achieved using XRD, SEM, and TEM to confirm phase compositions, crystal structures, and morphologies. High performance was observed for the α-Ni(0.87)Zn(0.13) and ß(1)-Ni(0.50)Zn(0.50) electrocatalysts with an onset potential of -0.15 V (vs. RHE) and a mass activity of 4000-3800 A g(cat)(-1) at 0.4 V (vs. RHE), respectively. Additionally, in situ IRRAS studies were conducted to understand the mechanism of oxidation. These results demonstrate the feasibility of Ni(1-x)Zn(x) catalysts for direct hydrazine anionic fuel cells.


Subject(s)
Aerosols/chemistry , Hydrazines/chemistry , Nickel/chemistry , Zinc/chemistry , Catalysis , Electric Power Supplies , Electrochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...