Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35448333

ABSTRACT

Functional biointerfaces hold broad significance for designing cell-responsive medical implants and sensor devices. Solid-supported phospholipid bilayers are a promising class of biological materials to build bioinspired thin-film coatings, as they can facilitate interactions with cell membranes. However, it remains challenging to fabricate lipid bilayers on medically relevant materials such as titanium oxide surfaces. There are also limitations in existing bilayer printing capabilities since most approaches are restricted to either deposition alone or to fixed microarray patterning. By combining advances in lipid surface chemistry and on-demand inkjet printing, we demonstrate the direct deposition and patterning of covalently tethered lipid bilayer membranes on titanium oxide surfaces, in ambient conditions and without any surface pretreatment process. The deposition conditions were evaluated by quartz crystal microbalance-dissipation (QCM-D) measurements, with corresponding resonance frequency (Δf) and energy dissipation (ΔD) shifts of around −25 Hz and <1 × 10−6, respectively, that indicated successful bilayer printing. The resulting printed phospholipid bilayers are stable in air and do not collapse following dehydration; through rehydration, the bilayers regain their functional properties, such as lateral mobility (>1 µm2/s diffusion coefficient), according to fluorescence recovery after photobleaching (FRAP) measurements. By taking advantage of the lipid bilayer patterned architectures and the unique features of titanium oxide's photoactivity, we further show how patterned cell culture arrays can be fabricated. Looking forward, this work presents new capabilities to achieve stable lipid bilayer patterns that can potentially be translated into implantable biomedical devices.

2.
Sensors (Basel) ; 20(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255882

ABSTRACT

With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide-polymer composites.

3.
RSC Adv ; 10(25): 14812-14817, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-35497148

ABSTRACT

Coordination polymers (CPs) and coordination network solids such as metal-organic frameworks (MOFs) have gained increasing interest during recent years due to their unique properties and potential applications. Preparing 3D printed structures using CP would provide many advantages towards utilization in fields such as catalysis and sensing. So far, functional 3D structures were printed mostly by dispersing pre-synthesized particles of CPs and MOFs within a polymerizable carrier. This resulted in a CP active material dispersed within a 3D polymeric object, which may obstruct or impede the intrinsic properties of the CP. Here, we present a new concept for obtaining 3D free-standing objects solely composed of CP material, starting from coordination metal complexes as the monomeric building blocks, and utilizing the 3D printer itself as a tool to in situ synthesize a coordination polymer during printing, and to shape it into a 3D object, simultaneously. To demonstrate this, a 3D-shaped nickel tetra-acrylamide monomeric complex composed solely of the CP without a binder was successfully prepared using our direct print-and-form approach. We expect that this work will open new directions and unlimited potential in additive manufacturing and utilization of CPs.

4.
RSC Adv ; 10(10): 5766-5776, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-35497410

ABSTRACT

The selective removal of radioactive cationic species, specifically 137Cs+ and 90Sr2+, from contaminated water is critical for nuclear waste remediation processes and environmental cleanup after accidents, such as the Fukushima Daiichi Nuclear Power Plant disaster in 2011. Nanoporous silicates, such as zeolites, are most commonly used for this process but in addition to acting as selective ion exchange media must also be deployable in a correct physical form for flow columns. Herein, Digital Light Processing (DLP) three-dimensional (3D) printing was utilized to form monoliths from zeolite ion exchange powders that are known to be good for nuclear wastewater treatment. The monoliths comprise 3D porous structures that will selectively remove radionuclides in an engineered form that can be tailored to various sizes and shapes as required for any column system and can even be made with fine-grained powders unsuitable for normal gravity flow column use. 3D-printed monoliths of zeolites chabazite and 4A were made, characterized, and evaluated for their ion exchange capacities for cesium and strontium under static conditions. The 3D-printed monoliths with 50 wt% zeolite loadings exhibit Cs and Sr uptake with an equivalent ion-capacity as their pristine powders. These monoliths retain their porosity, shape and mechanical integrity in aqueous media, providing a great potential for use to not only remove radionuclides from nuclear wastewater, but more widely in other aqueous separation-based applications and processes.

5.
Sci Rep ; 6: 36786, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830827

ABSTRACT

We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...