Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 363(1): 155-62, 1999 Mar 01.
Article in English | MEDLINE | ID: mdl-10049510

ABSTRACT

Under a variety of conditions, the permeability of the inner mitochondrial membrane to small solutes can be nonselectively increased. A classic mitochondrial permeability transition (MPT) was originally identified based on its dependence on matrix Ca2+ and its extreme sensitivity to cyclosporin A (CsA). It is now clear, however, that several additional and distinct processes can also produce increases in mitochondrial permeability. Both mitochondrial signal peptides (P. M. Sokolove and K. W. Kinnally, 1996, Arch. Biochem. Biophys. 336, 69-76) and butylated hydroxytoluene (BHT) (P. M. Sokolove and L. M. Haley, 1996, J. Bioenerg. Biomembr. 28, 199-206), for example, induce permeability increases that are relatively CsA insensitive and that persist in the presence of EGTA. Inorganic phosphate (Pi) appears to play a key role in each of these permeability increases. High (>1 mM) Pi levels facilitate the classic MPT, while Pi concentrations below 1 mM stimulate the permeability increase induced by signal peptides and inhibit that triggered by BHT. The effect of high Pi concentrations can most probably be explained by exchange of the anion for matrix ADP and the resulting alleviation of ADP-mediated inhibition of the MPT (R. G. Lapidus and P. M. Sokolove, 1994, J. Biol. Chem. 269, 18931-18936). In the experiments reported here, the mechanisms underlying the effects of low Pi concentrations on mitochondrial permeability were investigated, by monitoring mitochondrial volume, with the following results: (1) A hitherto unrecognized ability of Pi (<1 mM) to increase the lag preceding induction of the classic MPT by diamide, phenylarsine oxide, and t-butylhydroperoxide was identified. (2) Data were obtained suggesting that all of the effects of low Pi concentration, stimulation of signal peptide-induced swelling, blockade of BHT-induced swelling, and delay of the classic MPT, can be attributed to the capacity of the anion to complex Ca2+ in the mitochondrial matrix. (3) Differences in the responses of these three systems for enhancing mitochondrial permeability to experimental manipulation indicate that matrix Ca2+ plays more than one role in the regulation of mitochondrial permeability. An additional important finding is the observation that failure of EGTA to alter a mitochondrial process need not mean that the process is Ca2+ independent. In a multicompartment system, absence of EGTA action may instead reflect failure of the chelator to gain access to regulatory Ca2+.


Subject(s)
Calcium/metabolism , Mitochondria, Liver/metabolism , Phosphates/metabolism , Phosphates/physiology , Acetates/pharmacology , Aminoquinolines/pharmacology , Animals , Antioxidants/pharmacology , Butylated Hydroxytoluene/pharmacology , Calcimycin/pharmacology , Chelating Agents/pharmacology , Diamide/pharmacology , Egtazic Acid/pharmacology , Intracellular Membranes/metabolism , Ionophores/pharmacology , Male , Membrane Potentials/drug effects , Mitochondrial Swelling/drug effects , Permeability , Protein Sorting Signals/pharmacology , Rats , Rats, Sprague-Dawley , Sulfhydryl Reagents/pharmacology , tert-Butylhydroperoxide/pharmacology
2.
J Bioenerg Biomembr ; 28(2): 199-206, 1996 Apr.
Article in English | MEDLINE | ID: mdl-9132419

ABSTRACT

Mitochondria undergo a permeability transition (PT)2, i.e., become nonselectively permeable to small solutes, in response to a wide range of conditions/compounds. In general, opening of the permeability transition pore (PTP) is Ca2+- and P(i)-dependent and is blocked by cyclosporin A (CsA), trifluoperazine (TFP), ADP, and butylated hydroxytoluene (BHT). Gudz and coworkers have reported [7th European Bioenergetics Conference, EBEC Short Reports (1992) 7, 125], however, that, under some conditions, BHT increases mitochondrial permeability via a process that may not share all of these characteristics. Specifically, they determined that the BHT-induced permeability transition was independent of Ca2+ and was insensitive to CsA. We have used mitochondrial swelling to compare in greater detail the changes in permeability induced by BHT and by Ca2+ plus P(i) with the following results. (1) The dependence of permeability on BHT concentration is triphasic: there is a threshold BHT concentration (ca. 60 nmol BHT/ mg mitochondrial protein) below which no increase occurs; BHT enhances permeability in an intermediate concentration range; and at high BHT concentrations (>120 nmol/mg) permeability is again reduced. (2) The effects of BHT depend on the ratio of BHT to mitochondrial protein. (3) Concentrations of BHT too low to induce swelling block the PT induced by Ca2+ and P(i). (4) The dependence of the Ca2+-triggered PT on P(i) concentration is biphasic. Below a threshold of 50-100 mu M, no swelling occurs. Above this threshold swelling increases rapidly. (5) P(i) levels too low to support the Ca2+-induced PT inhibit BHT-induced swelling. (6) Swelling induced by BHT can be stimulated by agents and treatments that block the PT induced by Ca2+ plus P(i). These data suggest that BHT and Ca2+ plus P(i) increase mitochondrial permeability via two mutually exclusive mechanisms.


Subject(s)
Butylated Hydroxytoluene/pharmacology , Calcium/pharmacology , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Phosphates/pharmacology , Animals , Antioxidants/pharmacology , In Vitro Techniques , Male , Mitochondrial Swelling/drug effects , Permeability/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...