Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(21): 9691-9721, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30289716

ABSTRACT

HIF-2α, a member of the HIF family of transcription factors, is a key oncogenic driver in cancers such as clear cell renal cell carcinoma (ccRCC). A signature feature of these cancers is the overaccumulation of HIF-2α protein, often by inactivation of the E3 ligase VHL (von Hippel-Lindau). Herein we disclose our structure based drug design (SBDD) approach that culminated in the identification of PT2385, the first HIF-2α antagonist to enter clinical trials. Highlights include the use of a putative n → π*Ar interaction to guide early analog design, the conformational restriction of an essential hydroxyl moiety, and the remarkable impact of fluorination near the hydroxyl group. Evaluation of select compounds from two structural classes in a sequence of PK/PD, efficacy, PK, and metabolite profiling identified 10i (PT2385, luciferase EC50 = 27 nM) as the clinical candidate. Finally, a retrospective crystallographic analysis describes the structural perturbations necessary for efficient antagonism.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Carcinoma, Renal Cell/pathology , Drug Design , Indans/chemistry , Indans/pharmacology , Kidney Neoplasms/pathology , Sulfones/chemistry , Sulfones/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/chemistry , Cell Line, Tumor , Dogs , Indans/pharmacokinetics , Mice , Models, Molecular , Protein Conformation , Rats , Structure-Activity Relationship , Sulfones/pharmacokinetics , Tissue Distribution
2.
Cancer Res ; 76(18): 5491-500, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27635045

ABSTRACT

More than 90% of clear cell renal cell carcinomas (ccRCC) exhibit inactivation of the von Hippel-Lindau (pVHL) tumor suppressor, establishing it as the major underlying cause of this malignancy. pVHL inactivation results in stabilization of the hypoxia-inducible transcription factors, HIF1α and HIF2α, leading to expression of a genetic program essential for the initiation and progression of ccRCC. Herein, we describe the potent, selective, and orally active small-molecule inhibitor PT2385 as a specific antagonist of HIF2α that allosterically blocks its dimerization with the HIF1α/2α transcriptional dimerization partner ARNT/HIF1ß. PT2385 inhibited the expression of HIF2α-dependent genes, including VEGF-A, PAI-1, and cyclin D1 in ccRCC cell lines and tumor xenografts. Treatment of tumor-bearing mice with PT2385 caused dramatic tumor regressions, validating HIF2α as a pivotal oncogenic driver in ccRCC. Notably, unlike other anticancer agents that inhibit VEGF receptor signaling, PT2385 exhibited no adverse effect on cardiovascular performance. Thus, PT2385 represents a novel class of therapeutics for the treatment of RCC with potent preclincal efficacy as well as improved tolerability relative to current agents that target the VEGF pathway. Cancer Res; 76(18); 5491-500. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Animals , Antineoplastic Agents/chemistry , Calorimetry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Immunohistochemistry , Immunoprecipitation , Mice , Mice, SCID , Polymerase Chain Reaction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...