Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 9(7): 4149-4167, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31015995

ABSTRACT

AIM: Understanding the drivers of the structure of coral reef fish assemblages is vital for their future conservation. Quantifying the separate roles of natural drivers from the increasing influence of anthropogenic factors, such as fishing and climate change, is a key component of this understanding. It follows that the intrinsic role of historical biogeographical and geomorphological factors must be accounted for when trying to understand the effects of contemporary disturbances such as fishing. LOCATION: Comoros, Madagascar, Mozambique and Tanzania, Western Indian Ocean (WIO). METHODS: We modeled patterns in the density and biomass of an assemblage of reef-associated fish species from 11 families, and their association with 16 biophysical variables. RESULTS: Canonical analysis of principal coordinates revealed strong country affiliations of reef fish assemblages and distance-based linear modeling confirmed geographic location and reef geomorphology were the most significant correlates, explaining 32% of the observed variation in fish assemblage structure. Another 6%-8% of variation was explained by productivity gradients (chl_a), and reef exposure or slope. Where spatial effects were not significant between mainland continental locations, fishing effects became evident explaining 6% of the variation in data. No correlation with live coral was detected. Only 37 species, predominantly lower trophic level taxa, were significant in explaining differences in assemblages between sites. MAIN CONCLUSIONS: Spatial and geomorphological histories remain a major influence on the structure of reef fish assemblages in the WIO. Reef geomorphology was closely linked to standing biomass, with "ocean-exposed" fringing reefs supporting high average biomass of ~1,000 kg/ha, while "lagoon-exposed fringing" reefs and "inner seas patch complex" reefs yielded substantially less at ~500kg/ha. Further, the results indicate the influence of benthic communities on fish assemblages is scale dependent. Such insights will be pivotal for managers seeking to balance long-term sustainability of artisanal reef fisheries with conservation of coral reef systems.

2.
Ecol Evol ; 8(12): 6242-6252, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29988434

ABSTRACT

We quantify the relative importance of multi-scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo-Pacific biogeographical provinces. Large (>30 cm), functionally-important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local-scale variables, 'distance from port', a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re-emphasise the importance that historical processes play in structuring contemporary biotic communities.

3.
J Endod ; 38(11): 1530-4, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23063230

ABSTRACT

INTRODUCTION: Irrigation dynamics and antibacterial activity determine the efficacy of root canal disinfection. Sonic or ultrasonic agitation of irrigants is expected to improve irrigation dynamics. This study examined the effects of microbubble emulsion (ME) combined with sonic or ultrasonic agitation on irrigation dynamics and reduction of biofilm bacteria within root canal models. METHODS: Two experiments were conducted. First, high-speed imaging was used to characterize the bubble dynamics generated in ME by sonic or ultrasonic agitation within canals of polymer tooth models. Second, 5.25% NaOCl irrigation or ME was sonically or ultrasonically agitated in canals of extracted teeth with 7-day-grown Enterococcus faecalis biofilms. Dentinal shavings from canal walls were sampled at 1 mm and 3 mm from the apical terminus, and colony-forming units (CFUs) were enumerated. Mean log CFU/mL values were analyzed with analysis of variance and post hoc tests. RESULTS: High-speed imaging demonstrated strongly oscillating and vaporizing bubbles generated within ME during ultrasonic but not sonic agitation. Compared with CFU counts in controls, NaOCl-sonic and NaOCl-ultrasonic yielded significantly lower counts (P < .05) at both measurement levels. ME-sonic yielded significantly lower counts (P = .002) at 3 mm, whereas ME-ultrasonic yielded highly significantly lower counts (P = .000) at both measurement levels. At 3 mm, ME-ultrasonic yielded significantly lower CFU counts (P = .000) than ME-sonic, NaOCl-sonic, and NaOCl-ultrasonic. CONCLUSIONS: Enhanced bubble dynamics and reduced E. faecalis biofilm bacteria beyond the level achieved by sonic or ultrasonic agitation of NaOCl suggested a synergistic effect of ME combined with ultrasonic agitation.


Subject(s)
Biofilms/drug effects , Dental Pulp Cavity/microbiology , Microbubbles/therapeutic use , Root Canal Irrigants/chemistry , Root Canal Therapy/methods , Ultrasonic Therapy , Analysis of Variance , Colony Count, Microbial , Emulsions/chemistry , Emulsions/pharmacology , Enterococcus faecalis/drug effects , Humans , Root Canal Irrigants/pharmacology , Sodium Hypochlorite/chemistry , Sodium Hypochlorite/pharmacology , Sonication , Statistics, Nonparametric , Therapeutic Irrigation/methods
4.
Ecol Evol ; 2(12): 3195-213, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23301184

ABSTRACT

We used microsatellite markers to assess the population genetic structure of the scribbled rabbitfish Siganus spinus in the western Pacific. This species is a culturally important food fish in the Mariana Archipelago and subject to high fishing pressure. Our primary hypothesis was to test whether the individuals resident in the southern Mariana Island chain were genetically distinct and hence should be managed as discrete stocks. In addition to spatial sampling of adults, newly-settled individuals were sampled on Guam over four recruitment events to assess the temporal stability of the observed spatial patterns, and evidence of self-recruitment. We found significant genetic structure in S. spinus across the western Pacific, with Bayesian analyses revealing three genetically distinct clusters: the southern Mariana Islands, east Micronesia, and the west Pacific; with the southern Mariana Islands being more strongly differentiated from the rest of the region. Analyses of temporal samples from Guam indicated the southern Mariana cluster was stable over time, with no genetic differentiation between adults versus recruits, or between samples collected across four separate recruitment events spanning 11 months. Subsequent assignment tests indicated seven recruits had self-recruited from within the Southern Mariana Islands population. Our results confirm the relative isolation of the southern Mariana Islands population and highlight how local processes can act to isolate populations that, by virtue of their broad-scale distribution, have been subject to traditionally high gene flows. Our results add to a growing consensus that self-recruitment is a highly significant influence on the population dynamics of tropical reef fish.

5.
Proc Natl Acad Sci U S A ; 106(40): 17067-70, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19805081

ABSTRACT

Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.


Subject(s)
Anthozoa/growth & development , Conservation of Natural Resources/methods , Ecosystem , Fishes/growth & development , Analysis of Variance , Animals , Anthozoa/microbiology , Biodiversity , Environmental Monitoring/methods , Eukaryota/growth & development , Fishes/classification , Geography , Marine Biology , Perciformes/growth & development , Philippines , Population Density , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...