Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5153, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886376

ABSTRACT

Despite decades of research, we still do not understand how spontaneous human seizures start and spread - especially at the level of neuronal microcircuits. In this study, we used laminar arrays of micro-electrodes to simultaneously record the local field potentials and multi-unit neural activities across the six layers of the neocortex during focal seizures in humans. We found that, within the ictal onset zone, the discharges generated during a seizure consisted of current sinks and sources only within the infra-granular and granular layers. Outside of the seizure onset zone, ictal discharges reflected current flow in the supra-granular layers. Interestingly, these patterns of current flow evolved during the course of the seizure - especially outside the seizure onset zone where superficial sinks and sources extended into the deeper layers. Based on these observations, a framework describing cortical-cortical dynamics of seizures is proposed with implications for seizure localization, surgical targeting, and neuromodulation techniques to block the generation and propagation of seizures.


Subject(s)
Electroencephalography , Neocortex , Seizures , Humans , Seizures/physiopathology , Neocortex/physiopathology , Neocortex/physiology , Male , Adult , Female , Young Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Microelectrodes , Neurons/physiology
2.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31685634

ABSTRACT

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Subject(s)
Alpha Rhythm , Cerebral Cortex/physiology , Electrodes , Electroencephalography , Humans , Thalamus/physiology
3.
Neuron ; 103(2): 181-183, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31319046

ABSTRACT

Recent studies have expanded our understanding of sleep regulation by elucidating multiple neural circuits that promote sleep. In this issue of Neuron, Ma et al. (2019) identify a novel thalamo-amygdalar circuit which uses neurotensin to initiate and sustain NREM sleep.


Subject(s)
Neurons , Sleep , Amygdala
4.
Sci Rep ; 8(1): 2055, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391596

ABSTRACT

The neocortex is composed of six anatomically and physiologically specialized layers. It has been proposed that integration of activity across cortical areas is mediated anatomically by associative connections terminating in superficial layers, and physiologically by slow cortical rhythms. However, the means through which neocortical anatomy and physiology interact to coordinate neural activity remains obscure. Using laminar microelectrode arrays in 19 human participants, we found that most EEG activity is below 10-Hz (delta/theta) and generated by superficial cortical layers during both wakefulness and sleep. Cortical surface grid, grid-laminar, and dual-laminar recordings demonstrate that these slow rhythms are synchronous within upper layers across broad cortical areas. The phase of this superficial slow activity is reset by infrequent stimuli and coupled to the amplitude of faster oscillations and neuronal firing across all layers. These findings support a primary role of superficial slow rhythms in generating the EEG and integrating cortical activity.


Subject(s)
Cerebral Cortex/physiology , Delta Rhythm , Theta Rhythm , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Sleep , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...